Способы визуального представления данных. Методы визуализации. Визуализация информации: стоит ли овчинка выделки

Которая занимается проектированием пользовательских интерфейсов. В общих чертах Юрий рассказывает о набирающих в последнее время популярность дизайнерских методиках — визуализации и инфографике, о сферах их применения и классификации, процессе создания, инструментах и примерах из практики.

Тема визуализации информации и инфографики регулярно всплывает при работе, да и в целом интересна как практика проектирования и дизайна. Хотя мы в компании работаем над веб-системами, где большинство задач решается стандартными средствами конструирования вроде форм или информационных блоков, иногда требуется емко и компактно подать большое количество информации. Часто это достаточно специфичные задачи, на продумывание интерфейса которых уходит немало времени. Правда, и задачи эти — одни из самых интересных.

У практики отображения информации в графическом виде много синонимов, но в последнее время чаще всего используются два: визуализация данных и инфографика. Существуют эти подходы уже достаточно давно , литературы по этому поводу написано много (среди наиболее известных авторов и дизайнеров: Edward Tufte, Stephen Few, Ben Fry), но в первую очередь интересно, где и как используется инфографика.

Применение

Сейчас существует множество интересных примеров визуализации, но многие из них — скорее объекты искусства, чем практически полезные носители информации. И для тех, и для других можно выделить следующие области использования:

Статистика и отчеты

Самодостаточный жанр, когда данные за некий период времени показываются вместе. Например, статической картинкой в приложении к отчету или настраиваемым графиком в сервисе статистики, с возможностью изменения параметров его отображения.

Справочная информация

Дополнение к основному тексту, наглядно иллюстрирующее его упоминаемыми данными. Скажем, дать общее представление о динамике одного из показателей, либо отобразить какой-то процесс и его этапы; может быть — показать структуру некого явления.

Интерактивные сервисы

Продукты и проекты, в которых инфографика является частью функциональности. Так, в качестве средства навигации по сервисам со сложным workflow может выступать диаграмма процесса. Почти все, что связано с работой с картами и вовсе редко обходится без смешения инфографики и интерактивности, не говоря уже о специализированных системах вроде диспетчерских и большей части компьютерных игр.

Иллюстрации

Не совсем чистый жанр — скорее, использование практик и подходов красивого отображения данных для создания самостоятельных иллюстраций. Они несут некий смысл, но это не основная их задача — основной ценностью является качество исполнения.

Эксперименты и искусство

Визуализация данных без особого практического смысла, скорее в качестве экспериментов или инсталляций. Чаще всего это сложные и громоздкие изображения, которые сложно «прочитать» бегло — объем данных и взаимосвязей между ними таков, что нужно разбираться с картинкой по частям; либо просто абстрактные изображения, автоматически сгенерированные. В последнее время направление все более популярно и периодически выходит за рамки компьютерной графики — например, в виде графиков-скульптур.

(внимание! более 9 мегабайт)

Классификация

Набор инструментов визуализации достаточно обширен — от простейших линейных графиков до сложных отображений множества связей. Разбить их можно на несколько типов:

Графики

Показывают зависимость данных друг от друга. Строятся по осям X и Y, хотя могут быть и трехмерными.

Линейный график (line chart, area chart)

Наиболее распространенный случай. Объединяет линией набор точек, соответствующих значениям по осям. Например, ежедневная посещаемость сайта за месяц. Может показывать сразу несколько наборов данных — например, статистику просмотров для 3 наиболее популярных страниц.

График рассеивания (scatterplot)

Показывает распределение ограниченного набора точек, соответствующих значениям по осям. Между точек часто рисуется выравнивающая кривая — она наглядно показывает закономерности среди значений. Например, связь между стажем работы и производительностью труда среди 50 сотрудников компании (просто соединить полученные точки в виде линейного графика нельзя — и смысл искажается, и линия будет дерганой).

Диаграммы сравнения

Показывают соотношения набора данных. Во многих случаях строятся вокруг осей, хотя и необязательно.

Столбиковая диаграмма (bar chart)

Показывает один или несколько наборов данных, сравнивая их между собой. Существует два варианта отображения в случае нескольких наборов: либо в виде нескольких стоящих рядом столбиков, либо в виде одного, но поделенного внутри в соответствии с долями значений. Например, ежегодная прибыль трёх компаний за последние 5 лет или их доли рынка за это же время.

Круговая диаграмма (pie chart)

Отображает процент, занимаемый каждым значением внутри набора данных, в виде разбитого на части круга. Например, доли рынка сотовых операторов. Может отображать сразу несколько наборов данных — в этом случае диаграммы наложены друг на друга, причем каждая из них меньше предыдущей. Например, доли рынка сотовых операторов за последение 3 года.

Площадная диаграмма (bubble chart)

Смесь графика и диаграммы — по двум осям расставлен набор точек, соответствующий значениям. При этом сами точки не соединены и имеют различную величину, которая задается третьим параметром. Например, сравнение количества купленных товаров, общей стоимости покупки и величины общего бюджета покупателя.

Кольцевая диаграмма (ring chart)

Показывает процент от максимального количества, которое занимает одно из значений в наборе данных, в виде частично закрашенного кольца. Например, количество завоеванных на чемпионате медалей относительно максимального. Часто используется сразу несколько таких диаграмм, сравнивающих разные значения.

Диаграмма разброса (span chart)

Показывает минимальную и максимальную величину значений внутри набора данных в виде урезанной столбиковой диаграммы. Начало столбика лежит не на горизонтальной оси, а в точке минимального значения по вертикали. Например, разброс стоимости квадратного метра жилья в разных районах города.

Лепестковая диаграмма (radar chart)

Сравнивает величины нескольких значений, каждая из которых соответствует точке на оси. Количество осей соответствует количеству значений, а точки объединены линями. Например, сравнение рентабельности каждого из 8 направлений деятельности компании.

Облако тегов (tag cloud)

Сравнивает ключевые слова или фразы (значения), содержащиеся внутри фрагмента текста (набора данных), задавая каждому из них свой размер шрифта. Размер шрифта зависит от величины параметра. Например, 25 самых часто упоминаемых в газетах слов за декабрь 2008 года.

Тепловая диаграмма (heat map)

Сравнивает значения внутри набора данных, закрашивая их одним из цветов в заранее выбранном спектре. Основой является изображение или другая диаграмма, на которой расставлены значения. Цвет зависит от величины параметра и чаще всего накладывается в виде пятен. Например, элементы главной страницы сайта, по которым пользователи кликают чаще всего.

Деревья и структурные диаграммы

Показывают структуру набора данных и взаимосвязи между его элементами.

Дерево (tree)

Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Выстраивается в виде соединенных линиями узлов, как правило, сверху вниз. Узел обычно отображается кругом или прямоугольником. Например, карта сайта.

Ментальная карта (mind map)

Показывает состав и структуру явления или понятия в виде дерева, в котором каждый узел имеет один или несколько дочерних элементов. Это частный случай дерева, с той разницей, что ветви расходятся из узла, расположенного в центре изображения. Например, конспект книги по управлению проектами, который отражает ее содержание и основные понятия.

Формализованные структурные диаграммы

Показывают состав и структуру системы или ее части в виде карточек, которые описаны с разной степенью детализации и связаны друг с другом как родительские и дочерние.
Отображается в стандартизованном виде — например, с помощью UML (Unified Modeling Language) или IDEFIX (Integration Definition for Information Modeling). Например, все сущности, необходимые для работы одного из модулей программной системы.

Диаграмма Венна-Эйлера (Venn/Euler diagram)

Показывает отношения между значениями набора данных в виде накладывающихся друг на друга кругов (чаще всего трёх). Область, в которой пересекаются все круги, показывает общее между ними. Например, пересечением соблюдения сроков, бюджета и поставленных задач является успех проекта.

Плоское дерево (tree map)

Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Отображается в виде набора вложенных прямоугольников, каждый из которых является ветвью дерева, а находящиеся внутри него — дочерними элементами и ветвями. Прямоугольники различаются по размеру в зависимости от параметра и имеют цвет, который задается другим параметром. Например, детальная структура бюджета компании, в котором цветом показан процент изменения каждого пункта по сравнению с предыдущим годом.

Тема визуализации информации и инфографики регулярно всплывает при работе, да и в целом интересна как практика проектирования и дизайна. Хотя мы в компании работаем над веб-системами, где большинство задач решается стандартными средствами конструирования вроде форм или информационных блоков, иногда требуется емко и компактно подать большое количество информации. Часто это достаточно специфичные задачи, на продумывание интерфейса которых уходит немало времени. Правда, и задачи это одни из самых интересных.

У практики отображения информации в графическом виде много синонимов, но в последнее время чаще всего используются два — визуализация данных и инфографика. Существуют эти подходы уже достаточно давно , литературы по этому поводу написано много. Среди известных авторов и дизайнеров — Edward Tufte , Stephen Few , Ben Fry . Но в первую очередь интересно, где и как используется инфографика.

Применение

Сейчас существует множество интересных примеров визуализации, но многие из них скорее объекты искусства, чем практически полезные носители информации. Я вижу следующие области использования:

  • Статистика и отчеты . Самодостаточный жанр, когда данные за некий период времени показываются вместе. Например, статической картинкой в приложении к отчету или настраиваемым графиком в сервисе статистики, с возможностью изменения параметров его отображения.
  • Справочная информация . Дополнение к основному тексту, наглядно иллюстрирующее его упоминаемыми данными. Скажем, дать общее представление о динамике одного из показателей, либо отобразить какой-то процесс и его этапы; может быть — показать структуру некого явления.
  • Интерактивные сервисы . Продукты и проекты, в которых инфографика является частью функциональности. Так, в качестве средства навигации по сервисам со сложным workflow может являться диаграмма процесса. Почти все, что связано с работой с картами и вовсе редко обходится без микса инфографики и интерактивности, не говоря уже о специализированных системах вроде диспетчерских и большей части компьютерных игр.
  • Иллюстрации . Не совсем чистый жанр — скорее, использование практик и подходов красивого отображения данных для создания самостоятельных иллюстраций. Они несут некий смысл, но это не основная их задача — основной ценностью является качество исполнения.
  • Чертежи и схемы . Специализированные документы, показывающие структуру и процесс работы сложных инженерных и природных систем. Помимо различных карт, зачастую это редко использующиеся в повседневной жизни вещи вроде схем печатных плат.
  • Эксперименты и искусство . Визуализация данных без особого практического смысла, скорее в качестве экспериментов или инсталляций. Чаще всего это сложные и громоздкие изображения, которые сложно “прочитать” бегло — объем данных и взаимосвязей между ними таков, что нужно разбираться с картинкой по частям; либо просто абстрактные изображения, автоматически сгенерированные. В последнее время направление все более популярно и периодически выходит за рамки компьютерной графики — например, в виде графиков-скульптур.

Классификация

Набор инструментов визуализации достаточно обширен — от простейших линейных графиков до сложных отображений множества связей. Разбить их можно на несколько типов:

Графики

Показывают зависимость данных друг от друга. Строятся по осям X и Y, хотя могут быть и трехмерными.


(line chart, area chart). Наиболее распространенный случай. Объединяет линией набор точек, соответствующих значениям по осям. Например, ежедневная посещаемость сайта за месяц. Может показывать сразу несколько наборов данных — например, статистику просмотров для 3 наиболее популярных страниц.
Примеры: © BFM.ru , SmartMoney , TeleGeography Research
(scatterplot). Показывает распределение ограниченного набора точек, соответствующих значениям по осям. Между точек часто рисуется линия тренда — она наглядно показывает закономерности среди значений. Например, связь между стажем работы и производительностью труда среди 50 сотрудников компании (просто соединить полученные точки в виде линейного графика нельзя — и смысл искажается, и линия будет будет дерганой).
Примеры: © Statcon
Другие примеры в галерее паттернов

Диаграммы сравнения

Показывают соотношения набора данных. Во многих случаях строятся вокруг осей, хотя и необязательно.

(bar chart). Показывает один или несколько наборов данных, сравнивая их между собой. Существует два варианта отображения в случае нескольких наборов — либо в виде нескольких стоящих рядом столбиков, либо в виде одного, но поделенного внутри в соответствии с долями значений. Например, ежегодная прибыль трех компаний за последние 5 лет или доли рынка трех компаний за это же время.
Примеры: © SmartMoney
Другие примеры в галерее паттернов
(histogram). Показывает распределение набора данных внутри выборки в виде столбиков. Например, количество сотрудников компании в нескольких возрастных группах.
Примеры: © Студия Артемия Лебедева , Большая Советская Энциклопедия
Другие примеры в галерее паттернов
(pie chart). Отображает процент, занимаемый каждым значением внутри набора данных, в виде разбитого на части круга. Например, доли рынка сотовых операторов. Может отображать сразу несколько наборов данных — в этом случае диаграммы наложены друг на друга, причем каждая из них меньше предыдущей. Например, доли рынка сотовых операторов за последение 3 года.
Примеры: © Candy Chang , Density Design , GraphJam
Другие примеры в галерее паттернов
(bubble chart). Микс графика и диаграммы — по двум осям расставлен набор точек, соответствующий значениям. При этом сами точки не соединены и имеют различную величину, которая задается третьим параметром. Например, сравнение количества купленных товаров, общей стоимости покупки и величины общего бюджета покупателя.
Примеры: © (автор неизвестен), Секрет Фирмы , Коммерсантъ.Деньги
Другие примеры в галерее паттернов
(ring chart). Показывает процент от максимального количества, которое занимает одно из значений в наборе данных, в виде частично закрашенного кольца. Например, количество завоеванных на чемпионате медалей относительно максимального. Часто используется сразу несколько таких диаграмм, сравнивая разные значения.
Примеры: © Wired , New York Times
Другие примеры в галерее паттернов
(span chart). Показывает минимальную и максимальную величину значений внутри набора данных в виде урезанной столбиковой диаграммы. Начало столбика лежит не на горизонтальной оси, а в точке минимального значения по вертикали. Например, разброс стоимости квадратного метра жилья в разных районах города.
Примеры: © Potsdam University of Applied Sciences
Другие примеры в галерее паттернов
(radar chart). Сравнивает величины нескольких значений, каждая из которых соответствует точке на оси. Количество осей соответствует количеству значений, а точки объединены линями. Например, сравнение рентабельности каждого из 8 направлений деятельности компании.
Примеры: © Секрет Фирмы , Pedro Monteiro , Main Library at Queen Mary (University of London)
Другие примеры в галерее паттернов
(tag cloud). Сравнивает ключевые слова или фразы (значения), содержащиеся внутри фрагмента текста (набора данных), задавая каждому из них свой размер шрифта. Размер шрифта зависит от величины параметра. Например, 25 самых часто упоминаемых в газетах слов за декабрь 2008 года.
Примеры: © Flickr , Martin Ignacio Bereciartua
Другие примеры в галерее паттернов
(heat map). Сравнивает значения внутри набора данных, закрашивая их одним из цветов в заранее выбранном спектре. Основой является изображение или другая диаграмма, на которой расставлены значения. Цвет зависит от величины параметра и чаще всего накладывается в виде пятен. Например, страны мира с наиболее высоким атмосферным давлением или элементы главной страницы сайта, по которым пользователи кликают чаще всего.
Примеры: © Dylan Vester , CrazyEgg
Другие примеры в галерее паттернов

Деревья и структурные диаграммы

Показывают структуру набора данных и взаимосвязи между его элементами.

Граф и дерево (graph, tree). Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Выстраивается в виде соединенных линиями узлов либо сверху вниз, либо из центра композиции. Узел обычно отображается кругом или прямоугольником. Например, карта сайта.
Примеры: © Concept Draw , Karen Leech, (автор неизвестен)
Другие примеры в галерее паттернов
(mind map). Показывает состав и структуру явления или понятия в виде графа, в котором каждый узел имеет один или несколько дочерних элементов. Это частный случай графа, с той разницей что ветви обычно симметрично расходятся из узла, расположенного в центре изображения. Например, конспект книги по управлению проектами, который отражает ее содержание и основные понятия.
Примеры: © Adaptive Path , Ethan Hein , Comic vs Audience
Другие примеры в галерее паттернов
Формализованные структурные диаграммы . Показывают состав и структуру системы или ее части в виде карточек, которые описаны с разной степенью детализации и связаны друг с другом как родительские и дочерние. Отображается в стандартизованном виде — например, с помощью UML (Unified Modeling Language) или IDEF1X (Integration Definition for Information Modeling). Например, все сущности, необходимые для работы одного из модулей программной системы.
Примеры: © Concept Draw , Wikipedia
Другие примеры в галерее паттернов
(Venn/Euler diagram). Показывает отношения между значениями набора данных в виде накладывающихся друг на друга кругов (чаще всего трех). Область, в которой пересекаются все круги, показывает общее между ними. Например, пересечением соблюдения сроков, бюджета и поставленных задач является успех проекта.
Примеры: © Phil Glockner , Dan Saffer
Другие примеры в галерее паттернов
(tree map). Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Отображается в виде набора вложенных прямоугольников, каждый из которых является ветвью дерева, а находящиеся внутри него — дочерними элементами и ветвями. Прямоугольники различаются по размеру в зависимости от параметра и имеют цвет, который задается другим параметром. Например, детальная структура бюджета компании, в котором цветом показан процент изменения каждого пункта по сравнению с предыдущим годом.
Примеры: © Tableau Software , Panopticon , Panopticon
Другие примеры в галерее паттернов

Диаграммы визуализации процесса

Показывают процесс, состоящий из последовательности действий. Может включать один или несколько сценариев развития событий.

(block diagram). Показывает ключевые шаги, которые проходит процесс, в виде связанных друг с другом однонаправленными стрелками блоков. Отображается в стандартизированном формате, где вид блока зависит от его роли в процессе. Например, схема процесса утверждения и публикации статьи внутри редакции.
Примеры: © Density Design , Allen Holub , Concept Draw
Другие примеры в галерее паттернов
(block diagram). Показывает ключевые шаги, которые проходит процесс, в виде связанных друг с другом стрелками блоков. Отображается в свободной форме, когда шаги показаны произвольными фигурами, а стрелки могут быть двунаправленными или вообще не иметь направления. Кроме того, блоки могут быть объединены в группы. Например, упрощенная схема передвижения средств при SMS-платежах.
Примеры: © Tapulous , Секрет Фирмы , David Armano
Другие примеры в галерее паттернов
. Показывает ключевые шаги процесса, который содержит набор повторяющихся действий. Циклическая часть отображается в виде кольца, которое образуют соединенные стрелками шаги. А начало и окончание процесса — входящей и выходящей из круга стрелками. Например, последовательность процесса проверки качества, который проходит во время работы над программным продуктом.
Примеры: © Fruitful, eStrara, Idiagram
Другие примеры в галерее паттернов
(Sankey diagram). Показывает ключевые шаги процесса и интенсивность его протекания на каждом из участков. Отображается без узлов, в виде соединяющихся и разветвляющихся линий разной толщины (в зависимости от величины параметра). Имеет любое количество начальных и конечных точек, а значит и множество сценариев развития. Например, процесс передачи тепла от ТЭЦ к бойлерной станции, включая его потери по различным причинам.
Примеры: © , Sankey-diagrams.com , IBM
Другие примеры в галерее паттернов

Матрицы

Сопоставляют между собой значения внутри набора данных в виде таблицы.

Таблица (matrix). Показывает набор данных в виде заполненных его значениями ячеек, которые образуют собой строки и столбцы. Каждому столбцу и строке соответствует параметр, который определяет конкретную ячейку для значения. Например, бюджет отделов компании за каждый год ее существования.
Примеры: © Известия , PresseBox , Elliance
Другие примеры в галерее паттернов
. Частный случай таблицы. Показывает календарный месяц по номерам и дням недели.
Примеры: © thenonhacker , Yahoo! UI Patterns Library
Другие примеры в галерее паттернов

Диаграммы времени

Показывают распределение данных в зависимости от времени.

(timeline). Показывает значения из набора данных на горизонтальной оси, которая соответствует времени. Отрезки между значениями могут быть любой величины. Например, линия годов XX века, на которой отмечены крупные военные конфликты.
Примеры: © Секрет Фирмы , Rodrigo Ronda Leon , GOOD Magazine
Другие примеры в галерее паттернов
(Gantt diagram). Показывает последовательность, длительность, а также время начала и окончания этапов и конкретных задач, необходимых для выполнения проекта. Отображается в виде “водопада” из одного или нескольких каскадов — соединенных стрелками блоков, выстроенных по диагонали сверху вниз, слева направо (т.е. “лестницей”). Причем длина блока зависит от необходимого для выполнения времени. Например, задачи, которые нужно выполнить для написания, подготовки к печати и выпуска книги. Диаграмму можно также отнести и к группе визуализирующих процесс, но обе ее части (длительность и последовательность действий) одинаково важны, поэтому тут уже дело вкуса.
Примеры: © MS Project , Todd R. Warfel
Другие примеры в галерее паттернов

Карты

Показывают данные, зависимые от географии или архитектуры некого объекта.

. Показывает в схематичном виде состав и расположение частей географического объекта. Например, мир в целом или остров.
Примеры: © Google Maps , TeleGeography Research , Flowing Data
Другие примеры в галерее паттернов
. Показывает географический объект в виде фотографии со спутника или самолета. Например, мир в целом или город.
Примеры: © Google Maps , Яндекс.Карты
Другие примеры в галерее паттернов
. Показывает в схематичном виде трассы, магистрали, железные и другие дороги, наложенные на очертания географических объектов. Например, автомобильная карта дорог области.
Примеры: © MapQuest , Яндекс.Карты
Другие примеры в галерее паттернов
. Показывает различные объекты в виде маркеров на карте мира, страны или города. Объектами чаще всего являются те, что построены человеком: дома, магазины, памятники, объекты инфраструктуры и т.п. на карте города; либо города на карте страны; либо страны на карте мира. Основой может являться практически любая карта, но обычно используются географическая, фотографическая, дорожная или топографическая карты. Например, расположение офисов компании на карте города.
Примеры: © Яндекс.Карты , Автокадабра
Другие примеры в галерее паттернов
(cartogram). Показывает в виде схематичной карты набор данных, каждое из значений которого привязано к географическому объекту. При этом размер и форма объекта зависит от величины значения. Например, карта мира, на которой величина страны зависит от количества ее населения.
Примеры: © Density Design , (автор неизвестен), Manuel Marino
Другие примеры в галерее паттернов
(floor plan). Показывает в схематичном виде форму и внутреннее строение одного из этажей здания или другого архитектурного сооружения. Также может показывать расстановку мебели и других предметов наполнения помещений. Например, план помещений двухкомнатной квартиры.
Примеры: © Christian’s of Bucks Point , (автор неизвестен), (автор неизвестен)
Другие примеры в галерее паттернов
. Показывает остановки общественного транспорта в виде одной или нескольких пересекающихся линий разного цвета. Линия соответствует заранее определенной последовательности станций. В некоторых случаях накладывается на упрощенную географическую карту. Например, карта метро.
Круговая диаграмма связей (network diagram, arc diagram). Показывает связи внутри набора данных в виде кольца, на котором расставлены значения. Значения связаны дугами или линиями, находящимися во внутренней области круга. При большом количестве значений они могут находиться и внутри кольца, хотя это менее наглядно. Связи также могут иметь направление. Например, являются ли взаимными друзьями участники группы в социальной сети.
Примеры: © Ethan Hein , Ethan Hein , Josef Muller-Brockmann
Другие примеры в галерее паттернов
. Показывает связи внутри набора данных в виде линии, на которой расставлены значения. Значения связаны дугами, находящимися сверху и снизу линии. Связи также могут иметь направление. Это альтернативный вариант отрисовки круговой диаграммы связей — смысл и задачи у них одинаковые.
Примеры: © Martin Dittus , Andreas Koller & Philipp Steinweber , TeleGeography Research
Другие примеры в галерее паттернов
. Показывает связи внутри набора данных в виде земного шара или географической карты, на которой расставлены значения. Значения связаны дугами, если изображение трехмерное, или линиями, если карта плоская. Связи также могут иметь направление. Например, маршруты всех находящихся сейчас в воздухе самолетов.
Примеры: © National Science Foundation , Ensci , MIT Senseable City Lab
Другие примеры в галерее паттернов
(dendrogram). Показывает близость значений набора данных по одному из параметров, используя ось Y для расстановки самих значений, а ось X — величины параметра. Отображается в виде набора соединяющихся друг с другом горизонтальных линий, которые соединяются, если значения совпадают по параметру. Причем чем раньше совпадение значений находится по оси X, тем ближе они друг к другу. Например, сравнение годовой выручки 30 предприятий.
Примеры: © GUI.ru , New York Times , Kate Jones
Другие примеры в галерее паттернов

Иллюстрации

Показывают процесс или явление в неформализованном виде.

. Показывает ключевые шаги, которые проходит процесс, в виде изображенного на картинке сюжета. Либо структуру явления в виде визуальной метафоры. По сути является аналогом графика, диаграммы или неформальной блок-схемы. Например, изображение круговорота воды в природе в книге по природоведению.
Примеры: © Athletics NYC , Christian Montenegro , журнал «Популярные Финансы»
Другие примеры в галерее паттернов
. Показывает ключевые шаги последовательного процесса или явления в виде набора картинок, каждая из которых показывает один из его этапов в виде небольшого сюжета. Например, три этапа процесса параллельной парковки в инструкции для водителей.
Примеры: © Scenic Valley Driving School , Elliance
Другие примеры в галерее паттернов

Федеральное государственное бюджетное

образовательное учреждение

высшего профессионального образования

Восточно-Сибирская государственная академия образования

Факультет математики, физики и информатики

Кафедра информатики и методики обучения информатике


КУРСОВАЯ РАБОТА

«Технология визуализации учебной информации»

Специальность - «Профессиональное обучение компьютерных технологий, вычислительной техники и информатики»


Иркутск - 2012


Введение

I. Теоретические основы технологии визуализации

II. Роль методов визуализации учебной информации в обучении

III. Электронные наглядные средства обучения на основе современных компьютерных технологий

IV. Технологии визуализации знаний и презентации результатов исследований в сфере образования

Заключение

Список используемой литературы


ВВЕДЕНИЕ


Информационная насыщенность современного мира требует специальной подготовки учебного материала перед его предъявлением обучаемым, чтобы в визуально обозримом виде дать учащимся основные или необходимые сведения. Визуализация как раз и предполагает свертывание информации в начальный образ (например, в образ эмблемы, герба и т.п.).

Одним из средств улучшения профессиональной подготовки будущих учителей, способных к педагогическим инновациям, к разработке технологий проектирования эффективной учебной деятельности школьника в условиях доминирования визуальной среды, считается формирование у них особых умений визуализации учебной информации.

По данным психологов новая информация усваивается и запоминает лучше тогда, когда знания и умения «запечатлеваются» в системе визуально-пространственной памяти, следовательно представление учебного материала в структурированном виде позволяет быстрее и качественнее усваивать новые системы понятий, способы действий.

Визуализация учебного материала открывает возможность не только собрать воедино все теоретические выкладки, что позволит быстро воспроизвести материал, но и применять схемы для оценивания степени усвоения изучаемой темы.

Методика современного преподавания с использованием компьютерной графики и аудиовизуальных средств должна ориентироваться на будущие и современные технологии, в том числе и на тенденции развития способов использования информационно-компьютерных средств и технологий.


I.Теоретические основы технологии визуализации


В эпоху информационной насыщенности проблемы компоновки знания и оперативного его использования приобретают колоссальную значимость. В этой связи назрела потребность в систематизации накопленного опыта визуализации учебной информации и его научного обоснования с позиций технологического подхода к обучению.

Г.К. Селевко рассматривает технологию интенсификации обучения на основе схемных и знаковых моделей учебного материала как опыт В.Ф. Шаталова. По мнению Лаврентьева Г.В. и Лаврентьевой Н.Е., ее границы значительно шире, и опыт Шаталова - лишь одно из ее проявлений. Расширяя границы данной технологии, Лаврентьева Г.В. и Лаврентьевой Н.Е. предлагают более емкое ее название, а именно: технология визуализации учебного материала, понимая под этим не только знаковые, но и некоторые другие образы «визуализации», выступающие на первый план в зависимости от специфики изучаемого объекта. Это могут быть следующие базовые элементы зрительного образа:

направление;

структура;

движение.

Присутствуя в той или иной степени в любом зрительном образе, эти элементы кардинально влияют на восприятие и освоение человеком учебной информации. Интенсификация учебно-познавательной деятельности происходит за счет того, что и педагог, и обучаемый ориентируются не только на усвоение знаний, но и на приемы этого усвоения, на способы мышления, позволяющие увидеть связи и отношения между изучаемыми объектами, а значит, связать отдельное в единое целое. Технология визуализации учебной информации - это система, включающая в себя следующие слагаемые:

комплекс учебных знаний;

визуальные способы их предъявления;

визуально-технические средства передачи информации;

набор психологических приемов использования и развития визуального мышления в процессе обучения.

Технология визуализации учебного материала перекликается с педагогической концепцией визуальной грамотности, которая возникла в конце 60-х годов XX века в США. Эта концепция основывается на положениях о значимости визуального восприятия для человека в процессе познания мира и своего места в нем, ведущей роли образа в процессах восприятия и понимания, необходимости подготовки сознания человека к деятельности в условиях все более «визуализирующегося» мира и увеличения информационной нагрузки .

Информационная насыщенность современного мира требует специальной подготовки учебного материала перед его предъявлением обучаемым, чтобы в визуально обозримом виде дать учащимся основные или необходимые сведения. Визуализация как раз и предполагает свертывание информации в начальный образ (например, в образ эмблемы, герба и т.п.). Следует учитывать также возможности использования слуховой, обонятельной, осязательной визуализации, если именно эти ощущения являются значимыми в данной профессии.

Эффективным способом обработки и компоновки информации является ее «сжатие», т.е. представление в компактном, удобном для использования виде. Разработкой моделей представления знаний в «сжатом» виде занимается специальная отрасль информационной технологии - инженерия знаний. Дидактическая адаптация концепции инженерии знаний основана на том, что, «во-первых, создатели интеллектуальных систем опираются на механизмы обработки и применения знаний человеком, используя при этом аналогии нейронных систем головного мозга человека. Во-вторых, пользователем интеллектуальных систем выступает человек, что предполагает кодирование и декодирование информации средствами, удобными пользователю, т.е. как при построении, так и при применении интеллектуальных систем учитываются механизмы обучения человека» . К основам сжатия учебной информации можно отнести также теорию содержательного обобщения В.В. Давыдова, теорию укрупнения дидактических единиц П.М. Эрдниева. Под «сжатием» информации понимается прежде всего ее обобщение, укрупнение, систематизация, генерализация. П.М. Эрдниев утверждает, «что наибольшая прочность освоения программного материала достигается при подаче учебной информации одновременно на четырех кодах: рисуночном, числовом, символическом, словесном» . Следует также учесть, что способность преобразовывать устную и письменную информацию в визуальную форму является профессиональным качеством многих специалистов. Следовательно, в процессе обучения должны формироваться элементы профессионального мышления:

систематизация;

концентрация;

выделение главного в содержании.

Методологический фундамент рассматриваемой технологии составляют следующие принципы ее построения: принцип системного квантования и принцип когнитивной визуализации.

Системное квантование вытекает из специфики функционирования мыслительной деятельности человека, которая выражается различными знаковыми системами:

языковыми;

символическими;

графическими.

Всевозможные типы моделей представления знаний в сжатом компактном виде соответствуют свойству человека мыслить образами. Изучение, усвоение, обдумывание текста - как раз и есть составление схем в уме, кодировка материала. При необходимости человек может восстановить, «развернуть» весь текст, но его качество и прочность будет зависеть от качества и прочности этих схем в памяти, от того, созданы они интуитивно студентом или профессионально - преподавателем. Это довольно сложная интеллектуальная работа и студента надо последовательно к ней готовить.

Наибольший эффект в усвоении информации будет достигнут, если методы ведения записей соответствуют тому, как мозг хранит и воспроизводит информацию. Физиологи П.К. Анохин, Д.А. Поспелов доказывают, что это происходит не линейно, списком, аналогично речи или письму, а в переплетении слов с символами, звуками, образами, чувствами. Спецификой работы мозга обосновывают свою систему квантового обучения американские ученые-педагоги Б. Депортер и М. Хенаки. Их вклад в способы создания моделей учебного материала - это «Карты памяти», «Записи фиксирования и создания», «Метод группирования».

Принцип системного квантования предполагает учет следующих закономерностей:

учебный материал большого объема запоминается с трудом;

учебный материал, расположенный компактно в определенной системе, лучше воспринимается;

выделение в учебном материале смысловых опорных пунктов способствует эффективному запоминанию.

Принцип когнитивной визуализации вытекает из психологических закономерностей, в соответствии с которыми эффективность усвоения повышается, если наглядность в обучении выполняет не только иллюстративную, но и когнитивную функцию, то есть используются когнитивные графические учебные элементы. Это приводит к тому, что к процессу усвоения подключается «образное» правое полушарие. В то же время «опоры» (рисунки, схемы, модели), компактно иллюстрирующие содержание, способствуют системности знаний. По мнению З.И. Калмыковой, абстрактный учебный материал, прежде всего, требует конкретизации, и этой цели соответствуют различные виды наглядности - от предметной, до весьма абстрактной, условно-знаковой. «При восприятии наглядного материала человек может охватить единым взглядом все компоненты, входящие в целое, проследить возможные связи между ними, произвести категоризацию по степени значимости, общности, что служит основой не только для более глубокого понимания сущности новой информации, но и для ее перевода в долговременную память» .

Визуальное отображение принципов представлено на рисунке 1.


ОУСГ - обобщение, укрупнение, систематизация, генерализация;

СО - сигнальные опоры;

МД - мыслительная деятельность, реализуемая через знаковые системы.

Рис. 1. Визуальное представление принципов когнитивной визуализации и системного квантования


Г.К. Селевко утверждает, что любую систему или подход к обучению можно признать технологией, если она удовлетворяет следующим критериям:

наличие концептуальной основы;

системность (целостность частей);

управляемость, то есть возможность планировать, проектировать процесс обучения, варьировать средства и методы с целью получения запланированного результата;

эффективность;

воспроизводимость .

Суть рассматриваемой технологии, по мнению Лаврентьева Г.В. и Лаврентьевой Н.Е., сводится к целостности трех ее частей.

Систематическое использование в учебном процессе визуальных моделей одного определенного вида или их сочетаний.

Научение студентов рациональным приемам «сжатия» информации и ее когнитивно-графического представления.

Методические приемы включения в учебный процесс визуальных моделей. Работа с ними имеет четкие этапы и сопровождается еще целым рядом приемов и принципиальных методических решений.

Роль методов визуализации учебной информации в обучении


В последние десятилетия в области передачи визуальной информации произошли почти революционные изменения:

колоссально возросли объем и количество передаваемой информации;

сложились новые виды визуальной информации и способы ее передачи.

Технический прогресс и формирование новой визуальной культуры неминуемо накладывает свой отпечаток на свод требований, предъявляемых к деятельности педагогов.

Одним из средств улучшения профессиональной подготовки будущих учителей, способных к педагогическим инновациям, к разработке технологий проектирования эффективной учебной деятельности школьника в условиях доминирования визуальной среды, считается формирование у них особых умений визуализации учебной информации. Термин «визуализация» происходит от латинского visualis - воспринимаемый зрительно, наглядный. Визуализация информации представление числовой и текстовой информации в виде графиков, диаграмм, структурных схем, таблиц, карт и т.д. Однако такое понимание визуализации как процесса наблюдения предполагает минимальную мыслительную и познавательную активность обучающихся, а визуальные дидактические средства выполняют лишь иллюстративную функцию. Иное определение визуализации дается в известных педагогических концепциях (теории схем - Р.С. Андерсон, Ф. Бартлетт; теории фреймов - Ч. Фолкер, М. Минский и др.), в которых этот феномен истолковывается как вынесение в процессе познавательной деятельности из внутреннего плана во внешний план мыслеобразов, форма которых стихийно определяется механизмом ассоциативной проекции .

Аналогичным образом понятие визуализации понимает Вербицкий А.А.: «Процесс визуализации - это свертывание мыслительных содержаний в наглядный образ; будучи воспринятым, образ может быть развернут и служить опорой адекватных мыслительных и практических действий» . Данное определение позволяет развести понятия «визуальный», «визуальные средства» от понятий «наглядный», «наглядные средства». В педагогическом значении понятия «наглядный» всегда основано на демонстрации конкретных предметов, процессов, явлений, представление готового образа, заданного извне, а не рождаемого и выносимого из внутреннего плана деятельности человека. Процесс разворачивания мыслеобраза и «вынесение» его из внутреннего плана во внешний план представляет собой проекцию психического образа. Проекция встроена в процессы взаимодействия субъекта и объектов материального мира, она опирается на механизмы мышления, охватывает различные уровни отражения и отображения, проявляется в различных формах учебной деятельности .

Если целенаправленно рассматривать продуктивную познавательную деятельность как процесс взаимодействия внешнего и внутреннего планов, как вынесение будущих продуктов деятельности из внутреннего плана во внешний, как корректировку и реализацию во внешнем плане замыслов, то визуализация выступает в качестве главного механизма, обеспечивающего диалог внешнего и внутреннего планов деятельности. Следовательно, в зависимости от свойств дидактических визуальных средств зависит уровень активизации мыслительной и познавательной деятельности обучающихся.

В связи с этим возрастает роль визуальных моделей представления учебной информации, позволяющие преодолеть затруднения, связанные с обучением, опирающимся на абстрактно-логическое мышление. В зависимости от вида и содержания учебной информации используются приемы ее уплотнения или пошагового развертывания с применением разнообразных визуальных средств. В настоящее время в образовании перспективной представляется применение когнитивной визуализации дидактических объектов . Под это определение фактически подпадают все возможные виды визуализации педагогических объектов, функционирующие на принципах концентрации знаний, генерализации знаний, расширения ориентировочно-презентационных функций наглядных дидактических средств, алгоритмизации учебно-познавательных действий, реализуемая в визуальных средств.

На практике, используются более сотни методов визуального структурирования - от традиционных диаграмм и графов до «стратегических» карт (roadmaps), лучевых схем-пауков (spiders) и каузальных цепей (causal chains). Такое многообразие обусловлено существенными различиями в природе, особенностях и свойствах знаний различных предметных областей. Наибольшей информационной емкостью, на наш взгляд, универсальностью и интегративностью обладают структурно-логические схемы. Такой способ систематизации и визуального отображения учебной информации основывается на выявлении существенных связей между элементами знания и аналитико-синтетической деятельности при переводе вербальной информации в невербальную (образную), синтезирование целостной системы элементов знаний. Освоение перечисленных видов по конкретизации смыслов, разворачиванию логической цепочки размышлений, описанию образов и их признаков мыслительной деятельности, а также операций с помощью вербальных средств обмена информацией формирует продуктивные способы мышления, столь необходимые специалистам при современных темпах развития науки, техники и технологий. Согласно достижениям нейропсихологии «обучение эффективно тогда, когда потенциал мозга человека развивается через преодоление интеллектуальных трудностей в условиях поиска смысла через установление закономерностей» .

Структурно-логические схемы создают особую наглядность, располагая элементы содержания в нелинейном виде и выделяя логические и преемственные связи между ними. Такая наглядность опирается на структуру и ассоциативные связи, характерные для долговременной памяти человека. В некотором роде структурно-логические схемы выступают в роли промежуточного звена между внешним линейным содержанием (текст учебника) и внутренним нелинейным содержанием (в сознании). В качестве одного из достоинств структурно-логических схем А.В. Петров выделяет то, что «она выполняет функцию объединения понятий в определенные системы» . Сами по себе понятия ничего не могут сказать о содержании предмета обучения, но будучи связанными определенной системой, они раскрывают структуру предмета, его задачи и пути развития. Понимание и осмысление новой ситуации возникает тогда, когда мозг находит опору в прежних знаниях и представлениях.

Отсюда вытекает важность постоянной актуализации прежнего опыта для овладения новыми знаниями. Процесс изучения нового материала можно представить как восприятие и обработку новой информации путем ее соотнесения с понятиями и способами действий, известными обучающемуся, посредством использования освоенных им интеллектуальных операций. Поступающая в мозг по различным каналам информация концептуализируется и структурируется, образуя в сознании концептуальные сети. Новая информация встраивается в существующие когнитивные схемы, преобразует их и формирует новые когнитивные схемы и интеллектуальные операции. При этом устанавливаются связи между известными понятиями и способами действий и новыми знаниями, возникает структура нового знания .

По данным психологов новая информация усваивается и запоминает лучше тогда, когда знания и умения «запечатлеваются» в системе визуально-пространственной памяти , следовательно представление учебного материала в структурированном виде позволяет быстрее и качественнее усваивать новые системы понятий, способы действий. В качестве примера можно привести визуальную схему: «Цветовая модель RGB» (см. рис. 2).


Рис. 2. Схема понятия «Цветовая модель RGB»

Визуализация учебного материала открывает возможность не только собрать воедино все теоретические выкладки, что позволит быстро воспроизвести материал, но и применять схемы для оценивания степени усвоения изучаемой темы. В практике также широко используется метод анализа конкретной схемы или таблицы, в котором вырабатывают навыки сбора и обработки информации. Метод позволяет включить обучаемых в активную работу по применению теоретической информации в практической работе. Особое место уделяется совместному обсуждению, в процессе которого есть возможность получать оперативную обратную связь, понимать лучше себя и других людей. Обобщая сказанное, заметим, что в зависимости от места и назначения визуальных дидактических материалов в процессе формирования понятия (изучении теории, явления) к выбору определенной структурной модели и наглядному отображению содержания обучения должны быть предъявлены различные психолого-педагогические требования.

При визуализации учебного материала следует учитывать, что наглядные образы сокращают цепи словесных рассуждений и могут синтезировать схематичный образ большей «емкости», уплотняя тем самым информацию. В процессе разработки учебно-методических материалов необходимо контролировать степень обобщения содержания обучения, дублировать вербальную информацию образной и наоборот, чтобы при необходимости звенья логической цепи были полностью восстановлены обучающимися.

Другим важным аспектом использования визуальных учебных материалов является определение оптимального соотношения наглядных образов и словесной, символьной информации. Понятийное и визуальное мышление на практике находятся в постоянном взаимодействии. Они, дополняя друг друга, раскрывают различные стороны изучаемого понятия, процесса или явления. Словесно-логическое мышление дает нам более точное и обобщенное отражение действительности, но это отражение абстрактно. В свою очередь, визуальное мышление помогает организовать образы, делает их целостными, обобщенными, полными.

Визуализация учебной информации позволяет решить целый ряд педагогических задач:

обеспечение интенсификации обучения;

активизации учебной и познавательной деятельности;

формирование и развитие критического и визуального мышления;

зрительного восприятия;

образного представления знаний и учебных действий;

передачи знаний и распознавания образов;

повышения визуальной грамотности и визуальной культуры.

Электронные наглядные средства обучения на основе современных компьютерных технологий


В школьном образовании всегда применяли и до сих пор применяют самые разные виды наглядности. Роль их в процессе обучения исключительна. Особенно в том случае, когда использование наглядных средств не сводится к простому иллюстрированию с целью сделать учебный курс более доступным и легким для усвоения, а становится органичной частью познавательной деятельности учащегося, средством формирования и развития не только наглядно-образного, но и абстрактно-логического мышления. Это в свою очередь требует существенной переработки и изменения традиционных наглядных средств обучения, которые должны стать динамичными, интерактивными и мультимедийными.

В связи с этим особый интерес вызывает компьютерная визуализация учебной информации, которая позволяет наглядно представить на экране объекты и процессы во всевозможных ракурсах, в деталях, с возможностью демонстрации внутренних взаимосвязей составных частей, в том числе скрытых в реальном мире, и, что особенно важно, в развитии, во временном и пространственном движении. Обеспечивается компьютерная визуализация учебной информации специфическими наглядными средствами обучения, созданными на основе современных мультимедийных технологий, благодаря которым в процесс обучения становится возможным включать всё многообразие наглядных средств - текст, графику, звук, анимации, видеоизображения. Это, например, интерактивные карты, анимированные (динамические) опорные конспекты, интерактивные плакаты и пр. И речь в данном случае идет не о простом переводе традиционных наглядных пособий (таблиц, схем, картин, иллюстраций) в цифровой формат, а о разработке и создании совершенно новых видов наглядности. При этом ее появление вызвано не только потребностью в экспрессивной визуальной информации и зрительной стимуляции, к которым уже успели привыкнуть современные учащиеся, сколько дидактическими особенностями этого нового вида учебной наглядности.

В педагогической литературе пока нет общепринятого понятия для определения нового вида наглядности, созданной на основе современных информационных технологий. Это вызвано тем, что данная наглядность представляет собой весьма сложное явление, особенные отличительные признаки которого интегрированы в единую целостную систему, и поэтому так нелегко выявить ее сущность, то есть определить основные признаки и отличить их от второстепенных свойств. Даже названия авторы используют разные:

«компьютерная наглядность»;

«динамическая наглядность»;

«интерактивная наглядность»;

«виртуальная наглядность»;

«мультимедийная наглядность»;

«гипертекстовая наглядность» и пр.

При этом употребляют эти термины далеко не в одинаковых значениях, что создает дополнительные трудности.

В связи с этой разноголосицей Кучурин В.В. предлагает при обсуждении руководствоваться понятием «электронная наглядность», под которой будем понимать программное компьютерное средство представления комплекса визуальной гипертекстовой информации разных типов, предъявляемой обучаемому на экране компьютера, как правило, в интерактивном (диалоговом) режиме .

Компонентами электронной наглядности могут быть как статические (картины, схемы, таблицы и пр.), так и динамические (видео, анимация) изображения.

Ее основные характеристики: интерактивность, динамизм (анимированность) и мультимедийность.

В первую очередь электронные наглядные средства обучения отличаются интерактивностью. Это достаточно широкое по содержанию понятие, с помощью которого в современной науке раскрывают характер и степень взаимодействия между объектами. При этом данное свойство вовсе не сводится к общению между людьми. В обучении с применением информационных и коммуникационных технологий интерактивность представляет собой «возможность пользователя активно взаимодействовать с носителем информации, по своему усмотрению осуществлять ее отбор, менять темп подачи материала». В соответствии с этим интерактивность наглядных средств обучения на основе мультимедиа обеспечивает учащимся и учителю в определенных пределах возможность активно с нею взаимодействовать и управлять представлением информации, а именно задавать вопрос и получать на него ответ (интерактивность обратной связи) определять начало, продолжительность и скорость процесса демонстрации (временная интерактивность), определять очередность использования фрагментов информации (порядковая интерактивность,) изменять, дополнять или же уменьшать объем содержательной информации (содержательная интерактивность) и даже создавать собственный креативный продукт (творческая интерактивность). Такие возможности интерактивных наглядных средств обучения позволяют использовать методики проблемного обучения, обеспечивающие усвоение научных понятий и закономерностей на основе личного опыта взаимодействия с ними. Иначе говоря, интерактивность предоставляет возможности не только для пассивного восприятия информации, но и для активного исследования характеристик изучаемых объектов или процессов. Следовательно, интерактивность придает электронной наглядности когнитивный (познавательный) характер, вносит игровые и исследовательские компоненты в учебную работу, естественным образом побуждает учащихся к глубокому и всестороннему анализу свойств изучаемых объектов и процессов.

Динамический характер электронных наглядных средств обучения обеспечивается с помощью технологии анимации, которая позволяет манипулировать цветом, размерами объектов, создавать локальную мультипликацию, выделять один из объектов или часть объекта путём подчеркивания, обводки, заливки и пр. Кроме того, с помощью анимации создается иллюзия движения, изменения, развития. Все это делает наглядность более эмоциональной и впечатляющей. Вместе с тем, анимация, давая наглядное представление о динамике какого-либо явления, создает условия для демонстрации признаков и закономерностей изучаемых событий, явлений и процессов через действие, для сопоставления разных мнений и формулирования собственной точки зрения. Таким образом, динамика компьютерной анимации используется не только и даже не столько для усиления эмоционального воздействия через показ движения объекта («живой картинки»), сколько для активизации познавательной деятельности, наглядной демонстрации логики движения мысли от незнания к знанию.

Особое значение для характеристики электронной наглядности, созданной на основе современных информационных технологий, имеет и такое свойство, как мультимедийность. Оно связано с современными информационными технологиями, основанными на одновременном использовании различных средств представления информации и представляющей совокупность приемов, методов, способов и средств сбора, накопления, обработки, хранения, передачи, продуцирования аудиовизуальной, текстовой, графической информации в условиях интерактивного взаимодействия пользователя с информационной системой, реализующей возможности мультимедиа-операционных сред. Технологии мультимедиа позволяют интегрировано представить на экране любую аудиовизуальную информацию, реализуя интерактивный диалог пользователя с системой. Благодаря этому их активно используют при разработке и создании наглядных средств обучения, компонентами которых являются статические и анимированные изображения, а также текстовая и видеоинформация со звуковым сопровождением.

В соответствии с основными характеристиками электронные наглядные средства можно разделить на динамические (анимированные), интерактивные и мультимедийные.

Динамическая (анимированная) наглядность - это средство обучения, представляющее собой движущееся, изменяющееся изображение. Оно позволяет сформировать наглядные представления о развитии событий и процессов во времени и пространстве, сконцентрировать внимание обучающихся на конкретном объекте изучения, повысить плотность занятия за счет ускорения подачи информации. Управление ограничивается функциями проигрывания, остановки и паузы, что, между прочим, указывает на ограниченную, в данном случае временную, интерактивность динамической (анимированной) наглядности.

Динамическая (анимированная) наглядность включает в себя такие конкретные наглядные средства обучения как анимированные карты, анимированные схемы, диаграммы, графики, слайд-шоу.

Интерактивная наглядность - это средство обучения, представляющее собой гипертекстовую анимированную иллюстрацию в сочетании с набором инструментов управления, позволяющих пользователю взаимодействовать с ним в диалоговом режиме.

В настоящее время учителями используются интерактивные карты, интерактивные схемы, интерактивные планы объекта, интерактивные реконструкции и пр.

Мультимедийная наглядность - это средство обучения, в котором интегрированы информационные объекты различных типов: звук, текст, изображение.

В качестве примера мультимедийной наглядности можно привести мультимедиалекции, мультимедиапанорамы, электронный звуковой плакат.

К сожалению, в настоящее время использование наглядных средств обучения, созданных на основе современных информационных технологий вызывает у многих учителей заметные трудности, связанные с отбором средств наглядности для решения конкретных педагогических задач, приемов и методов работы с ними и форм организации учебной деятельности.


IV.Технологии визуализации знаний и презентации результатов исследований в сфере образования

визуализация учебный обучение компьютерный

Развитие вычислительной техники решило вопросы обработки такого объема информации. Но возникла проблема наглядно представить результаты такой обработки. Здесь применяются различные методы визуализации, посредством которых легко можно представлять большие и сложные объемы данных. Системы распознавания визуальных образов - 2-х мерные (символы, граф. знаки, коды, штрих-коды) - FineReader и 3-х мерные объектов (фотоизображения, охранные и видеосистемы) - встроенное в современном фотооборудовании, технологии использования машинного зрения (работа компьютерных систем с массивами данных).

Графики и схемы упрощают восприятие и облегчают восприятие текста человеком. Иногда нескольких схем достаточно для того, чтобы понять смысл изложенного на нескольких страницах проекта.

Цветовое кодирование применяется в исследованиях для анализа и прогнозирования различных физических и математических процессов. Например, в исследовании теплопроцессов, энергопередачи можно наглядно продемонстрировать распределение и тренд температуры в цветовом решении, в социологических процессах, иллюстрировать природные явления.

Бурное развитие 3-х мерной графики - научная визуализация сформировалась в самостоятельную отрасль науки, вобрав в себя основы дифференциального исчисления, геометрии, программирования. Переход на 3D-технологии превратил графику из средства представления в мощный метод решения научных проблем. Трехмерная визуализация может широко применяться для образовательных систем в различных областях науки. Обучение с использованием трехмерных моделей очень наглядно и позволяет разнообразить формы подачи материала и повышать интерес слушателя.

Наибольшее значение виртуальная визуализация имеет в интерактивных системах обучения, таких, как разнообразного вида тренажеры.

Специалистам, использующим аудио и визуальные технологии в своей профессиональной деятельности, необходимо перманентное повышение квалификации. Так как они обычно уже имеют базовое образование, то слежение за развитием новых технологий, методик использования новых программных продуктов и решений может быть реализовано через дистанционные формы. Здесь имеется в виду кейс-технологии, различные формы удаленного тестирования и аттестации, веб-конференции и тому подобное.

Интернет плюс проектная деятельность с использованием средств ИКТ сегодня мощный инструмент, как в образовательной, так и в социальной сфере для продвижения новых методологий обучения, развития бизнеса и повышения компетенции специалиста, но пользоваться им необходимо умело. В условиях современных информационных и социальных реалий назрела необходимость нового методологического подхода к преподаванию таких дисциплин, связанных с использованием компьютерной графики, аудиовизуальных средств.

Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), и соответственно содержанию дисциплин их изучения для различных специализаций. Современные дисциплины в области ИКТ характеризуются следующими особенностями: сложность описания (большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), что требует изучения законов и методик моделирования и анализа данных и процессов, а также новых интеллектуальных инструментов.

Методика современного преподавания с использованием компьютерной графики и аудиовизуальных средств должна ориентироваться на будущие и современные технологии, в том числе и на тенденции развития способов использования информационно-компьютерных средств и технологий. В современной методике конечно должны быть представлены необходимые технические условия, программное обеспечение и требования к пользователю, которые создают условия для обращения к цифровой графике и компьютерному дизайну. Но еще более важно то, что в состав учебно-методических комплексов должна быть заложена изначально возможность их модернизации и интеграции с динамичным изменением информационного ресурса.


Заключение


В данной курсовой работе были рассмотрены технологии визуализации учебной информации, которые позволяют вариативно и рационально использовать различные схемно-знаковые модели представления знаний; устранить несбалансированность текстового и иллюстративного зрительного ряда, «забитость» текстом; повысить выразительность визуального языка и символики, приобретающих особую значимость в век информационных технологий; оптимизировать затраты времени на восприятие и усвоение информации и тем самым повысить эффективность учебно-познавательной деятельности.


Список используемой литературы


Российская педагогическая энциклопедия: В 2 т./ Гл. ред. В.В. Давыдов.- М.: Большая Российская энциклопедия, 1993.- Т.2.- 608 с.

Чошанов М.А. Гибкая технология проблемно-модульного обучения: Метод. пособ.- М.: Народное образование, 1996.- 160 с.

Эрдниев П.М. Системность знаний и укрепление дидактической единицы //Сов. Педагогика.-1975.-№4.-С. 72-80.

Калмыкова З.И Развивает ли продуктивное мышление система обучения В.Ф. Шаталова?//Вопросы психологии. - 1987.-№2.С. 71-80.

Селевко Г.К. Современные образовательные технологии: Учеб. пособ.- М.: Народное образование, 1998.- 256 с.

Манько, Н.Н. Когнитивная визуализация дидактических объектов в активизации учебной деятельности // Известия алтайского государственного университета. Серия: Педагогика и психология. - № 2. - 2009. - С. 22-28.

Вербицкий, А. А. Активное обучение в высшей школе: контекстный подход / А. А. Вербицкий. - М.: Высш. шк., 1991. - 207 с.

Блейк, С., Пейп, С., Чошанов, М. А. Использование достижений нейропсихологии в педагогике США // Педагогика. - № 5. - 2004. - С. 85-90.

Петров, А.В. Развивающее обучение. Основные вопросы теории и практики вузовского обучения физике: монография / А.В. Петров. - Челябинск: Издательство ЧГПУ «Факел», 1997.

Лозинская А. М. Фреймовый способ структурирования содержания модульной программы обучения физике / А. М. Лозинская // Известия Уральского государственного университета. - 2009. - № 3(67). - С. 176-184.

"Говорят, один рисунок стоит тысячи слов, и это действительно так, но при условии, что рисунок хороший." Боумена

С возрастанием количества накапливаемых данных, даже при использовании сколь угодно мощных и разносторонних алгоритмов Data Mining, становится все сложнее "переваривать" и интерпретировать полученные результаты. А, как известно, одно из положений Data Mining - поиск практически полезных закономерностей. Закономерность может стать практически полезной, только если ее можно осмыслить и понять.

В 1987 году по инициативе ACM SIGGRAPH IEEE Computer Society Technical Committee of Computer Graphics, в связи с необходимостью использования новых методов, средств и технологий данных, были сформулированы соответствующие задачи направления визуализации.

К способам визуального или графического представления данных относят графики, диаграммы, таблицы, отчеты, списки, структурные схемы, карты и т.д.

Визуализация традиционно рассматривалась как вспомогательное средство при анализе данных, однако сейчас все больше исследований говорит о ее самостоятельной роли.

Традиционные методы визуализации могут находить следующее применение:

представлять пользователю информацию в наглядном виде;

компактно описывать закономерности, присущие исходному набору данных;

снижать размерность или сжимать информацию;

восстанавливать пробелы в наборе данных;

находить шумы и выбросы в наборе данных.

Визуализация инструментов Data Mining

Каждый из алгоритмов Data Mining использует определенный подход к визуализации. В предыдущих лекциях мы рассмотрели ряд методов Data Mining. В ходе использования каждого из методов, а точнее, его программной реализации, мы получали некие визуализаторы, при помощи которых нам удавалось интерпретировать результаты, полученные в результате работы соответствующих методов и алгоритмов.

Для деревьев решений это визуализатор дерева решений, список правил, таблица сопряженности.

Для нейронных сетей в зависимости от инструмента это может быть топология сети, график изменения величины ошибки, демонстрирующий процесс обучения.

Для карт Кохонена: карты входов, выходов, другие специфические карты.

Для линейной регрессии в качестве визуализатора выступает линия регрессии.

Для кластеризации: дендрограммы, диаграммы рассеивания.

Диаграммы и графики рассеивания часто используются для оценки качества работы того или иного метода.

Все эти способы визуального представления или отображения данных могут выполнять одну из функций:

являются иллюстрацией построения модели (например, представление структуры (графа) нейронной сети);

помогают интерпретировать полученный результат;

являются средством оценки качества построенной модели;

сочетают перечисленные выше функции (дерево решений, дендрограмма).

Визуализация Data Mining моделей

Первая функция (иллюстрация построения модели), по сути, является визуализацией Data Mining модели. Существует много различных способов представления моделей, но графическое ее представление дает пользователю максимальную "ценность". Пользователь, в большинстве случаев, не является специалистом в моделировании, чаще всего он эксперт в своей предметной области. Поэтому модель Data Mining должна быть представлена на наиболее естественном для него языке или, хотя бы, содержать минимальное количество различных математических и технических элементов.

Таким образом, доступность является одной из основных характеристик модели Data Mining. Несмотря на это, существует и такой распространенный и наиболее простой способ представления модели, как "черный ящик". В этом случае пользователь не понимает поведения той модели, которой пользуется. Однако, несмотря на непонимание, он получает результат - выявленные закономерности. Классическим примером такой модели является модель нейронной сети.

Другой способ представления модели - представление ее в интуитивном, понятном виде. В этом случае пользователь действительно может понимать то, что происходит "внутри" модели. Таким образом, можно обеспечить его непосредственное участие в процессе.

Такие модели обеспечивают пользователю возможность обсуждать ее логику с коллегами, клиентами и другими пользователями, или объяснять ее.

Понимание модели ведет к пониманию ее содержания. В результате понимания возрастает доверие к модели. Классическим примером является дерево решений. Построенное дерево решений действительно улучшает понимание модели, т.е. используемого инструмента Data Mining.

Кроме понимания, такие модели обеспечивают пользователя возможностью взаимодействовать с моделью, задавать ей вопросы и получать ответы. Примером такого взаимодействия является средство "что, если". При помощи диалога "системапользователь" пользователь может получить понимание модели.

Теперь перейдем к функциям, которые помогают интерпретировать и оценить результаты построения Data Mining моделей. Это всевозможные графики, диаграммы, таблицы, списки и т.д.

Примерами средств визуализации, при помощи которых можно оценить качество модели, являются диаграмма рассеивания, таблица сопряженности, график изменения величины ошибки.

Диаграмма рассеивания представляет собой график отклонения значений, прогнозируемых при помощи модели, от реальных. Эти диаграммы используют для непрерывных величин. Визуальная оценка качества построенной модели возможна только по окончанию процесса построения модели.

Таблица сопряженности используется для оценки результатов классификации. Такие таблицы применяются для различных методов классификации. Они уже использовались нами в предыдущих лекциях. Оценка качества построенной модели возможно только по окончанию процесса построения модели.

График изменения величины ошибки . График демонстрирует изменение величины ошибки в процессе работы модели. Например, в процессе работы нейронных сетей пользователь может наблюдать за изменением ошибки на обучающем и тестовом множествах и остановить обучение для недопущения "переобучения" сети. Здесь оценка качества модели и его изменения может оцениваться непосредственно в процессе построения модели.

Примерами средств визуализации, которые помогают интерпретировать результат, являются: линия тренда в линейной регрессии, карты Кохонена, диаграмма рассеивания в кластерном анализе.

Методы визуализации

Методы визуализации, в зависимости от количества используемых измерений, принято классифицировать на две группы :

представление данных в одном, двух и трех измерениях;

представление данных в четырех и более измерениях.

Представление данных в одном, двух и трех измерениях

К этой группе методов относятся хорошо известные способы отображения информации, которые доступны для восприятия человеческим воображением. Практически любой современный инструмент Data Mining включает способы визуального представления из этой группы.

В соответствии с количеством измерений представления это могут быть следующие способы:

одномерное (univariate) измерение, или 1-D;

двумерное (bivariate) измерение, или 2-D;

трехмерное или проекционное (projection) измерение, или 3-D.

Следует заметить, что наиболее естественно человеческий глаз воспринимает двухмерные представления информации.

При использовании двух- и трехмерного представления информации пользователь имеет возможность увидеть закономерности набора данных:

его кластерную структуру и распределение объектов на классы (например, на диаграмме рассеивания);

топологические особенности;

наличие трендов;

информацию о взаимном расположении данных;

существование других зависимостей, присущих исследуемому набору данных.

Если набор данных имеет более трех измерений, то возможны такие варианты:

использование многомерных методов представления информации (они рассмотрены ниже);

снижение размерности до одно-, двухили трехмерного представления. Существуют различные способы снижения размерности, один из них - факторный анализ - был рассмотрен в одной из предыдущих лекций. Для снижения размерности и одновременного визуального представления информации на двумерной карте используются самоорганизующиеся карты Кохонена.

Представление данных в 4 + измерениях

Представления информации в четырехмерном и более измерениях недоступны для человеческого восприятия. Однако разработаны специальные методы для возможности отображения и восприятия человеком такой информации.

Наиболее известные способы многомерного представления информации:

параллельные координаты;

∙ "лица Чернова";

лепестковые диаграммы.

Параллельные координаты

В параллельных координатах переменные кодируются по горизонтали, вертикальная линия определяет значение переменной. Пример набора данных, представленного в декартовых координатах и параллельных координатах, дан на рис. 16.1 . Этот метод представления многомерных данных был изобретен Альфредом Инселбергом (Alfred Inselberg) в 1985 году.

    Визуализация - ИЗОБРАЖЕНИЙ 24. Визуализация Display Визуальное представление данных Источник: ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения …

    Способ отображения информации о состоянии технологического оборудования и параметрах технологического процесса на мониторе компьютера или операторской панели в системе автоматического управления в промышленности, предусматривающий также… … Википедия

    В общем смысле метод представления информации в виде оптического изображения (например, в виде рисунков и фотографий, графиков, диаграмм, структурных схем, таблиц, карт и т. д.). Очень эффективно визуализация используется для представления… … Словарь бизнес-терминов

    Египетские иероглифы позволяли интуитивно наглядно описывать понятия … Википедия

    Визуализация типовой формы - 98. Визуализация типовой формы Form flash Визуальное представление типовой формы Источник: ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения … Словарь-справочник терминов нормативно-технической документации

    Визуализация - (лат. visualis зрительный) 1. формирование зрительного наглядного или мысленного образа (например, можно «воочию» представить себе страницу книги, где находится нужный текст); 2. в психопатологии присоединение к нарушениям мышления зрительных… … Энциклопедический словарь по психологии и педагогике

    ГОСТ 27459-87: Системы обработки информации. Машинная графика. Термины и определения - Терминология ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения оригинал документа: 5. Абсолютная команда визуализации Absolute command Команда визуализации, в которой используются абсолютные координаты… … Словарь-справочник терминов нормативно-технической документации

    Содержание 1 Как это работает 2 Безопасность 3 Действующие службы передачи дорожной … Википедия

    извлечение информации из данных - разведка данных Технология анализа хранилищ данных, базирующаяся на методах ИИ и инструментах поддержки принятия решений. Процесс обнаружения корреляции, тенденций, шаблонов, связей и категорий. Выполняется путем тщательного исследования данных с … Справочник технического переводчика

    Тип Сист … Википедия

Книги

  • , Кабаков Роберт И.. R -это мощный язык для статистических вычислений и графики, который может справится поистине с любой задачей в области обработки данных. Он работает во всех важных операционных системах и…
  • R в действии. Анализ и визуализация данных на языке R , Роберт И. Кабаков. R– это мощный язык для статистических вычислений и графики, который может справиться поистине с любой задачей в области обработки данных. Он работает во всех важныхоперационных системах и…


Понравилась статья? Поделиться с друзьями: