Биологические мембраны и ионные каналы. Общее представление о структуре и функциях ионных каналов Потенциал зависимые натриевые каналы

Строение и функции ионных каналов. Ионы Na + , K + , Са 2+ , Сl - проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (ди­аметр 0,5-0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. На­иболее распространенным является метод фиксации напряжения, или «voltage-clamp» (рис. 2.2). Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный по­тенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соот­ветствии с законом Ома величина тока пропорциональна проводи­мости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембран­ная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для раз­личных ионов (табл. 2.1). Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом ло­кальной фиксации потенциала «path-clamp»; рис. 2.3, А). Стеклян­ный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разре­жение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регист­рируют активность одиночного канала. Система раздражения и ре­гистрации активности канала мало отличается от системы фиксации напряжения.

Таблица 2.1. Важнейшие ионные каналы и ионные токи возбудимых клеток



Примечание. ТЭА - тетраэтиламмоний; ТТХ - тетродотоксин.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диа­лиза, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Ока­залось, что часть ионного канала, открытая во внеклеточное про­странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мем­браны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так назы­ваемые воротные механизмы).

5. Понятие о возбудимости. Параметры возбудимости нервно-мышечной системы: порог раздражения (реобаза), полезное время (хронаксия). Зависимость силы раздражения от времени его действия (кривая Гоорвега-Вейса). Рефрактерность.

Возбудимость – способность клетки отвечать на раздражение формирование ПД и специфической реакцией.

1) фаза локального ответа – частичная деполяризация мембраны (вхождение Na + в клетку). Если нанести раздражитель небольшой, то ответ – сильнее.

Локальная деполяризация – фаза экзальтации.



2) фаза абсолютной рефрактерности – свойство возбудимых тканей не формировать ПД ни при каком по силе раздражителе

3) фаза относительной рефрактерности.

4) фаза медленной реполяризации – раздражение – опять сильный ответ

5) фаза гиперполяризации – возбудимость меньше (субнормальная), стимул должен быть большим.

Функциональная лабильность – оценка возбудимости ткани через максимально возможное количество ПД в единицу времени.

Законы возбуждения:

1) закон силы – сила раздражителя должна быть пороговой или надпороговой (минимальная величина силы, которая вызывает возбуждение). Чем сильнее раздражитель, тем сильнее возбуждение – только для объединений ткани (нервный ствол, мышца, исключение – ГМК).

2) закон времени – длительной действующего раздражителя должна быть достаточной для возникновения возбуждения.

Между силой и временем обратно пропорциональная зависимость в границах между минимальным временем и минимальной силой. Минимальная сила – реобаза – сила, которая вызывает возбуждение и не зависит от длительности. Минимальное время – полезное время. Хронаксия – возбудимость той или иной ткани, время, при котором возникает возбуждение, равно двум реобазам.

Чем больше сила, тем больше ответ до определенного значения.

Факторы, создающие МПП:

1) разность концентраций натрия и калия

2) различная проницаемость для натрия и калия

3) работа Na-К насоса (3 Na + выводится, 2 К + возвращается).

Зависимость между силой раздражителя и продолжительностью его воздействия, необходимого для возникновения минимальной ответной реакции живой структуры, очень хорошо можно проследить на так называемой кривой силы - времени (кривая Гоорвега-Вейса-Лапика).

Из анализа кривой следует, что, как бы ни велика была сила раздражителя, при недостаточной длительности его воздействия ответной реакции не будет (точки слева от восходящей ветви гиперболы). Аналогичное явление наблюдается при продолжительном действии подпороговых раздражителей. Минимальная сила тока (или напряжения), способная вызвать возбуждение, названа Лапиком реобазой (отрезок ординаты ОА). Наименьший промежуток времени, в течение которого ток, равный по силе удвоенной реобазе, вызывает в ткани возбуждение, называют хронаксией (отрезок абсциссы OF), которая представляет собой показатель пороговой длительности раздражения. Хронаксия измеряется в δ (тысячные доли секунды). По величине хронаксии можно судить о скорости возникновения возбуждения в ткани: чем меньше хронаксия, тем быстрее возникает возбуждение. Хронаксия нервных и мышечных волокон человека равна тысячным и десятитысячным долям секунды, а хронаксия так называемых медленных тканей, например мышечных волокон желудка лягушки, - сотым долям секунды.

Определение хронаксии возбудимых тканей получило широкое распространение не только в эксперименте, но и в физиологии спорта, в клинике. В частности, путем измерения хронаксии мышцы невропатолог может установить наличие повреждения двигательного нерва. Необходимо отметить, что раздражитель может быть достаточно сильным, иметь пороговую длительность, но низкую скорость нарастания во времени до пороговой величины, возбуждение в этом случае не возникает. Приспособление возбудимой ткани к медленно нарастающему раздражителю получило название аккомодации. Аккомодация обусловлена тем, что за время нарастания силы раздражителя в ткани успевают развиться активные изменения, повышающие порог раздражения и препятствующие развитию возбуждения. Таким образом, скорость нарастания раздражения во времени, или градиент раздражения, имеет существенное значение для возникновения возбуждения.

Закон градиента раздражения. Реакция живого образования на раздражитель зависит от градиента раздражения, т. е. от срочности или крутизны нарастания раздражителя во времени: чем выше градиент раздражения, тем сильнее (до определенных пределов) ответная реакция возбудимого образования.

Следовательно законы раздражения отражают сложные взаимоотношения между раздражителем и возбудимой структурой при их взаимодействии. Для возникновения возбуждения раздражитель должен иметь пороговую силу, обладать пороговой длительностью и иметь определенную скорость нарастания во времени.

6. Ионные насосы (АТФ-азы): K+-Na+-евая, Ca2+-евая (плазмолеммы и саркоплазматического ретикулума), H+–K+-обменник.

Согласно современным представлениям, в биологических мембранах имеются ионные насосы,работающие за счет свободной энергии гидролиза АТФ, - специальные системы интегральных белков (транспортные АТФазы).

В настоящее время известны три типа электрогенных ионных насосов, осуществляющих активный перенос ионов через мембрану (рис.13).

Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток.

При работе К+-Na+-АТФазы за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создается повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная натрия, что имеет огромное физиологическое значение.

Признаки «бионасоса»:

1. Движение против градиента электрохимического потенциала.

2. поток вещества сопряжён с гидролизом АТФ (или другого источника энергии).

3. асимметрия транспортной машины.

4. насос in vitro способен гидролизовать АТФ только в присутствии тех ионов, которые он переносит in vivo.

5. при встраивании насоса в искусственную среду он способен сохранять селективность.

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее прослеживаются основные этапы этого сложного ферментативного процесса. В случае К+-Nа+-АТФазы насчитывается семь этапов переноса ионов, сопряженных с гидролизом АТФ.

На схеме видно, что ключевыми этапами работы фермента являются:

1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния);

2) связывание комплексом трех ионов натрия;

3) фосфорилирование фермента с образованием аденозиндифосфата;

4) переворот (флип-флоп) фермента внутри мембраны;

5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны;

6) обратный переворот ферментного комплекса с переносом ионов калия внутрь клетки;

7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата (Р).

Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Последнее обновление: 28/10/2013

Вторая статья из серии «Основы физиологии человека и животных». Речь пойдёт о механизме формирования потенциала действия - основы любого движения.

Возбудимые клетки (которыми являются в той или иной степени все клетки организма животного) в покое имеют избыток отрицательного заряда, формирующий . Если клетка подвергается внешнему раздражению, она переходит в возбуждённое состояние и генерирует другой потенциал - потенциал действия.

Реализует этот процесс система ионных каналов в мембране клетки, регулирующая концентрации электрически заряженных частиц - ионов. Все каналы, независимо от специализации, управляются определёнными силами. Это может быть изменение потенциала на клеточной мембране - в случае потенциал-зависимых каналов, повышение концентрации определённых активных веществ - для лиганд-зависимых или растяжение мембраны - для механически управляемых каналов.

Каналы - это специфические белки, встроенные в мембрану. Каждый тип каналов пропускает определённые ионы. Это система пассивного транспорта: ионы проходят через них благодаря диффузии, а каналы просто контролируют концентрацию проходящих частиц, регулируют для них проницаемость мембраны.

В формировании потенциала действия, как и потенциала покоя, принимают участие главным образом ионы натрия и калия.

Натриевые каналы имеют достаточно простое строение: это белок из трёх разных субъединиц, которые образуют структуру, похожую на пору - то есть трубку с внутренним просветом. Канал может находиться в трёх состояниях: закрытом, открытом и инактивированном (закрыт и невозбудим). Это обеспечивается локализацией отрицательных и положительных зарядов в самом белке; эти заряды притягиваются к противоположным, существующим на мембране, и таким образом канал при изменении состояния мембраны открывается и закрывается. Когда он открыт, ионы натрия могут беспрепятственно проникать через него в клетку по градиенту концентрации. Это очень короткий момент времени - буквально доли миллисекунды.

Калиевые каналы устроены ещё проще: это отдельные субъединицы, имеющие в разрезе трапециевидную форму; они расположены почти вплотную друг к другу, но между ними всегда остаётся зазор. Калиевые каналы не закрываются до конца, в состоянии покоя калий свободно уходит из цитоплазмы (по градиенту концентрации).

И натриевые, и калиевые каналы являются потенциал-зависимыми - они работают в зависимости от изменений электрического потенциала мембраны.

При формировании потенциала действия происходит резкая кратковременная перезарядка мембраны. Это обеспечивается несколькими последовательными процессами.

Сначала под воздействием внешнего раздражения (например, электрического тока) мембрана деполяризуется - то есть заряды с разных её сторон меняются на противоположные (внутри клетки заряд переходит в положительный, снаружи - в отрицательный). Это является сигналом к открытию натриевых каналов, которых на поверхности одной мембраны огромное число - может быть до 12 тысяч. Момент, в который начинают открываться каналы, носит название критического уровня деполяризации. Ток, который даёт эту критическую деполяризацию, назван пороговым.

Интересно, что повышение силы тока после достижения пороговой величины не меняет характеристик получающегося в итоге потенциала действия. Значение для открытия каналов имеет не амплитуда тока, а полученное мембраной количество энергии - «количество электричества». Эта закономерность получила название «всё или ничего» - либо есть полноценный ответ на раздражение при его величине от пороговой и выше, либо ответа нет вообще, если раздражение пороговой величины не достигло. При этом значение пороговой величины определяется длительностью подаваемого раздражения.

Действителен этот закон, правда, только в рамках отдельной клетки. Если брать, например, нерв, составленный большим количеством разных аксонов, амплитуда тоже будет иметь значение, потому что ответ на раздражение мы увидим только тогда, когда каналы активируются во всех клетках - то есть при большем суммарном значении порогового тока.

После открытия каналов натрий начинает поступать в клетку, и его ток значительно превышает ток выходящего по градиенту калия. Это значит, что проницаемость мембраны для натрия становится больше, чем для калия. В определённый момент открываются почти все натриевые каналы. Это происходит лавинообразно: от той точки, в которую пришёл стимул, в обе стороны. Таким образом, концентрация натрия в клетке резко повышается.

После этого концентрации ионов должны вернуться к исходным. Это обеспечивает такое общее свойство каналов, как рефрактерность: канал, который сработал, некоторое время после этого неактивен и не может возбудиться под действием раздражающего стимула.

Натриевые каналы в момент максимального ответа на раздражение становятся рефрактерны, проницаемость для натрия резко падает. Калиевые каналы, напротив, начинают активно работать, и ток калия из клетки возрастает. Таким образом из клетки уходит избыток положительно заряженных ионов и восстанавливается изначальный потенциал покоя. Этот период времени, пока не восстановятся натриевые каналы и исходный потенциал (это может занимать около миллисекунды), клетка не способна возбудиться.

Поскольку способность клеток к возбуждению обеспечивает работу организма как целого и возможность центрального контроля всех клеток организма, яды, блокирующие каналы, являются одними из самых опасных для человека и многих животных.

Один из самых страшных блокаторов каналов - тетродотоксин, вещество, вырабатываемое рыбой фугу. Для него значение LD50 (50% Level of Death - доза, от которой умрут 50 человек из ста) равно 10 миллиграмм на килограмм веса, то есть примерно в тысячу раз меньше, чем для цианида. Его молекулы связываются прочной связью с белком натриевого канала, когда он в закрытом состоянии, и полностью блокируют возможность возникновения потенциала действия. Похожие токсины вырабатывают некоторые водоросли. Яд скорпиона, напротив, держит все каналы в постоянно открытом состоянии.

Ну ладно скорпион, а вот зачем такое страшное оружие водорослям - загадка.


Есть что сказать? Оставть комментарий!.

Ионные каналы представлены интегральными белками мембраны. Эти белки способны, при определенных воздействиях, изменять свою конформацию (форму и свойства) таким образом, что пора, через которую может пройти какой-либо ион открывается или закрывается. Известны натриевые, калиевые, кальциевые, хлорные каналы, иногда канал может пропускать два иона, например известны натрий – кальциевые каналы. Через ионные каналы осуществляется только пассивный транспорт ионов. Это значит, что для перемещения иона необходим не только открытый канал, но и градиент концентрации для этого иона. В этом случае, будет движение иона по градиенту концентрации – из области с большей концентрацией в область с меньшей концентрацией. Необходимо помнить, что мы говорим об ионах – заряженных частицах, транспорт которых обусловлен еще и зарядом. Возможны ситуации, когда движение по градиенту концентрации может быть направлено в одну сторону, а существующие заряды противодействуют этому переносу.

Ионные каналы обладают двумя важнейшими свойствами: 1) избирательностью (селективностью) по отношению к определенным ионам и 2) способностью открываться (активироваться) и закрываться . При активации канал открывается и пропускает ионы (рис. 8). Таким образом, в комплекс интегральных белков, формирующих канал, должны обязательно входить два элемента: структуры, распознающие «свой» ион и способные его пропустить, и структуры, которые позволяют узнать – когда пропускать этот ион. Селективность канала определяется теми белками, которые его образуют, «свой» ион распознается по размерам и заряду.

Активация каналов возможна несколькими путями. Во-первых, каналы могут открываться и закрываться при изменении потенциала мембраны. Изменение заряда приводит к изменению конформации белковых молекул, и канал становится проницаемым для иона. Для изменения свойств канала достаточно ничтожного колебания потенциала мембраны. Такие каналы называются потенциал-зависимые (или электроуправляемые). Во-вторых, каналы могут быть частью сложного белкового комплекса, который называется мембранный рецептор. В этом случае изменение свойств канала обусловлено конформационнй перестройкой белков, которая происходит в результате взаимодействия рецептора с биологически активным веществом (гормоном, медиатором). Такие каналы называются хемозависимые (или рецептор-управляемые) . Кроме того, каналы могут открываться при механическом воздействии – давлении, растяжении (рис.9). Механизм, который обеспечивает активацию, называется воротами канала. По скорости, с которой открываются и закрываются каналы их можно разделить на быстрые и медленные.

Большинство каналов (калиевые, кальциевые, хлорные) могут находиться в двух состояниях: открытом и закрытом. В работе натриевых каналов есть некоторые особенности. Этим каналам, как и калиевым, кальциевым, хлорным свойственно находиться или в открытом, или в закрытом состоянии, однако, натриевый канал может быть и инактивирован, этот состояние, в котором канал закрыт и не может быть открыт никаким воздействием (рис.10).

Рисунок 8. Состояния ионных каналов

Рисунок 9. Пример работы рецептор-управляемого канала. АЦХ – ацетилхолин. Взаимодействие молекулы АЦХ с мембранным рецептором изменяет конформацию воротного белка таким образом, что канал начинает пропускать ионы .

Рисунок 10 Пример потенциал-зависимого канала

В потенциал-зависимом натриевом канале имеются активационные и инактивационные ворота (заслонки). Активационные и инактивационные заслонки меняют конформацию при различном мембранном потенциале.

При рассмотрении механизмов возбуждения нас будет интересовать в основном работа натриевых и калиевых каналов, однако, остановимся коротко на особенностях кальциевых каналов, они нам понадобятся в дальнейшем. Натриевые и кальциевые каналы отличаются по своим свойствам. Натриевые каналы бывают быстрые и медленные, а кальциевые – только медленные. Активация натриевых каналов приводит только к деполяризации и возникновению или ЛО, или ПД, активация кальциевых может дополнительно вызвать метаболические изменения в клетке. Эти изменения обусловлены тем, что кальций связывается со специальными, чувствительными к этому иону белками. Связанный с кальцием белок изменяет свойства таким образом, что становится способен изменить свойства других белков, например, активировать ферменты, запустить сокращение мышцы, выделение медиаторов.

Ионные каналы образованы белками, они весьма разнообразны по устройству и механизму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управляемого ионного канала обычно длится около 1 мс, иногда до 3 мс и значительно больше, при этом через один канал может пройти 12--20 млн ионов.

Классификация ионных каналов проводится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляемые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Например, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с быстрыми каналами для Nа+ и К+ важную роль играют медленные каналы -- кальциевые, калиевые и натриевые.

В зависимости от стимула, активирующего или инактивирующего, управляемые ионные каналы различают несколько их видов:

  • а)потенциалчувствительные,
  • б)хемочувствительные,
  • в)механочувствительные,
  • г)кальцийчувствительные,
  • д) каналы, чувствительные ко вторым посредникам.

Последние расположены во внутриклеточных мембранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить открытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д -- это биологически активное вещество или фармакологический препарат, активирующий или блокирующий рецептор. Открытие хемочувствительных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие электрический заряд. Механочувствительные каналы активируются и инактивируются сдавливанием и растяжением. Кальцийчувствительные каналы активируются, как видно из названия, кальцием, причем Са2+ может активировать как собственные каналы, например Са-каналы саркоплазматического ретикулума, так и каналы других ионов, например каналы ионов К+. Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные каналы. Следует заметить, что кальций-чувствительные каналы -- это один из примеров хемочувствительных каналов.

В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть каналы, пропускающие несколько ионов, например Nа+, К+ и Са2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нервно-мышечном синапсе активируются ионные каналы, через которые проходят одновременно ионы Nа+, К+ и Са2+. Механочувствительные каналы являются вообще неселективными для одновалентных ионов и Са2+.

Один и тот же ион может иметь несколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К+:

  • а) неуправляемые каналы покоя (каналы утечки) через которые К+ постоянно выходит из клетки, что является главным фактором в формировании мембранного потенциала(потенциала покоя);
  • б) потенциалчувствительные управляемые К-каналы;
  • в) К-каналы, активируемые Са2+;
  • г) каналы, активируемые и другими ионами и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа+ -- управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

  • а) потенциалчувствительные быстрые Na-каналы -- быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа+ в клетку во время ее возбуждения;
  • б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мышечном синапсе, глутаматом -- в синапсах нейронов ЦНС;
  • в) медленные неуправляемые Nа-каналы--каналы утечки, через которые Nа+ постоянно диффундирует в клетку и пере носит с собой другие молекулы, например глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа+ в формировании мембранного потенциала.

Каналы для Са2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и быстрые:

  • а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембраны, обусловливают медленный вход Са2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;
  • б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са2+ в гиалоплазму и электромеханическое сопряжение.

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в небольшом количестве в нейронах и сконцентрированы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, рецепторуправляемые в синапсах ЦНС и активируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функционирование. Каналы имеют устье и селективный фильтр, а управляемые каналы -- и воротный механизм; каналы заполнены жидкостью, их размеры 0,3--0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диаметр иона Nа+, например, с гидратной оболочкой равен 0,3 нм, а без гидратной оболочки -- 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеивания» не в состоянии объяснить, например, почему К+ не проходит через открытые Nа-каналы в начале цикла возбуждения клетки, но тем не менее она дает удовлетворительное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (селективной) проницаемости клеточных мембран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых каналов способствует активации рядом расположенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Частичная деполяризация клеточной мембраны за счет активации механочувствительных каналов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+.

Ионные каналы блокируются специфическими веществами и фармакологическими препаратами, что широко используется с лечебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхолином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые -- двухвалентными ионами, например ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успешное изучение ионных каналов дает возможность глубже понять механизм действия фармакологических препаратов, а значит, более успешно применять их в клинической практике. Новокаин, например, как местный анестетик снимает болевые ощущения потому, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волокнам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществляется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает переход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и распространение возбуждения.

Процесс перехода воды из одной области в другую, согласно закону осмоса, обеспечивает транспорт всех частиц, растворенных в ней и способных пройти через биологические фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на перенос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транспорт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает перемещение мембранных переносчиков, соединенных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-переносчиков, которые в свою очередь транспортируют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрационному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энергии.

Диффузия газов в легких между воздухом и кровью, а также в тканях между кровью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организма и легких. Диффузия веществ из кишечника, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту концентрации, на создание которого клетки организма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц -- в кишечнике) являются исключением, когда транспорт в организме осуществляется вообще без затраты энергии. Однако энергия расходуется на доставку этих веществ в организм -- дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на движение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирование мембранных потенциалов клеток мышечной и нервной тканей, одной из функций последней является регуляция различных систем организма.

Для различных веществ и, в частности, для минеральных ионов имеет исключительно важное значение в жизнедеятельности клетки и особенно в механизмах восприятия, преобразования, передачи сигналов от клетки к клетке и на внутриклеточные структуры.

Определяющую роль в состоянии проницаемости мембран клетки имеют их ионные каналы, которые формируются каналообразующими белками . Открытие и закрытие этих каналов могут контролироваться величиной разности потенциалов между наружной и внутренней поверхностями мембраны, множеством сигнальных молекул (гормонов, нейромедиаторов, сосудоактивных веществ) вторичными посредниками передачи внутриклеточных сигналов, минеральными ионами.

Ионный канал — несколько субъединиц (интегральных мембранных белков, содержащих трансмембранные сегменты, каждый из которых имеет а-спиральную конфигурацию), обеспечивающих перенос ионов через мембрану.

Рис. 1. Классификация ионных каналов

Современные представления о строении и функции ионных каналов стали возможными благодаря разработке методов регистрации электрических токов, протекающих через изолированный участок мембраны, содержащий одиночные ионные каналы, а также благодаря выделению и клонированию отдельных генов, контролирующих синтез белковых макромолекул, способных формировать ионные каналы. Это позволило искусственно модифицировать структуру таких молекул, встраивать их в мембраны клеток и изучать роль отдельных пептидных участков для выполнения функций каналов. Оказалось, что каналообразующие белковые молекулы всех ионных каналов имеют некоторые общие признаки строения и обычно представлены большими трансмембранными белками с молекулярными массами выше 250 кД .

Они состоят из нескольких субъединиц. Обычно важнейшие свойства каналов определяются их а-субъединнней . Эта субъединица принимает участие в формировании ионоселективной норы, сенсорного механизма трансмембранной разности потенциалов — ворот канала и имеет места связывания для экзогенных и эндогенных лигандов. Другие субъединицы, входящие в структуру ионных каналов, играют вспомогательную роль, модулирующую свойства каналов (рис. 2).

Каналообразующая белковая молекула представлена внемембранными аминокислотными петлями и внутримембранными спирализованными участками-доменами, образующими субъединицы ионных каналов. Белковая молекула сворачивается в плоскости мембраны так, что между контактирующими друг с другом доменами и формируется собственно ионный канал (см. рис. 2, внизу справа).

Каналообразующая молекула белка располагается в цитоплазматической мембране так, что ее трехмерная пространственная структура формирует устья канала, обращенные к наружной и внутренней сторонам мемораны, пору, заполненную водой, и «ворота». Последние образуются участком пептидной цепи, который может легко изменять свою конформацию и определять открытое или закрытое состояние канала. От размеров поры и ее заряда зависят селективность и проницаемость ионного канала. Проницаемость канала для данного иона определяется также его размерами, величиной заряда и гидратной оболочкой.

Рис. 2. Строение Na+ -ионного канала клеточной мембраны: а — двухмерное строение а-еубъединицы ионного канала клеточной.мембраны; б — слева — натриевый канал, состоящий из а-субъединнцы и двух Р-субъединнн (вид сбоку); справа — вил натриевого канала сверху. Цифрами I. II. III. IV отмечены домены а-субъединицы

Типы ионных каналов

Описано более 100 разновидностей ионных каналов, для классификации которых используют различные подходы. Один из них основан на учете различий в строении каналов и в механизмах функционирования. При этом ионные каналы можно разделить на несколько типов:

  • пассивные ионные каналы, или каналы покоя;
  • каналы щелевых контактов;
  • каналы, состояние которых (открытое или закрытое) контролируется влиянием на их воротный механизм механических факторов (механочувствительные каналы), разности потенциалов на мембране (потенциалзависимые каналы) или лигандов, связывающихся с каналообразующим белком на внешней или внутренней стороне мембраны (лигандзависимые каналы).

Пассивные каналы

Отличительной особенностью этих каналов является то, что они могут быть открытыми (активными) в покоящихся клетках, т.е. в отсутствие каких-либо воздействий. Это предопределяет их второе название — пассивные каналы. Они не являются строго селективными, и через них мембрана клетки может «протекать» для нескольких ионов, например К+ и CI+ К+ и Na+. Поэтому иногда эти каналы называют каналами утечки. Благодаря перечисленным свойствам каналы покоя играют важную роль в возникновении и поддержании на цитоплазматической мембране клетки мембранного потенциала покоя, механизмы и значение которого обсуждаются далее. Пассивные каналы представлены в цитоплазматических мембранах нервных волокон и их окончаний, клеток поперечно-полосатой, гладкой мускулатуры, миокарда и других тканей.

Механочувствительные каналы

Состояние проницаемости этих каналов изменяется при механических воздействиях на мембрану, вызывающих нарушение структурной упаковки молекул в мембране и ее растяжение. Эти каналы широко представлены в механорецепторов сосудов, внутренних органов, кожи, поперечно-полосатых мышц, гладких миоцитов.

Потенциалзависимые каналы

Состояние этих каналов управляется силами электрического поля, создаваемого величиной разности потенциалов на мембране. Потенциалзависимые каналы могут находиться в неактивном (закрытом), активном (открытом) и инактивированном состояниях, которые контролируются положением активационных и инактивационных ворот, зависящим от разности потенциалов на мембране.

В покоящейся клетке потенциалзависимый канал находится обычно в закрытом состоянии, из которого он может быть открыт или активирован. Вероятность его самостоятельного открытия невысокая, и в состоянии покоя лишь небольшое количество этих каналов в мембране открыто. Уменьшение трансмембранной разности потенциалов (деполяризация мембраны) вызывает активацию канала, повышая вероятность его открытия. Предполагается, что функцию активационных ворот выполняет электрически заряженная аминокислотная группа, закрывающая вход в устье канала. Эти аминокислоты являются сенсором разности потенциалов на мембране; при достижении определенного (критического) уровня деполяризации мембраны заряженная часть молекулы сенсора смещается в сторону липидного микроокружения каналообразующей молекулы и ворота открывают вход в устье канала (рис. 3).

Канал становится открытым (активным) для перемещения через него ионов. Скорость открытия активационных ворот может быть низкой и очень высокой. По этому показателю потенциалзависимые ионные каналы делят на быстрые (например, быстрые потенциалзависимые натриевые каналы) и медленные (например, медленные потенциалзависимые кальциевые каналы). Быстрые каналы открываются мгновенно (мкс) и остаются открытыми в среднем в течение 1 мс. Их активация сопровождается быстрым лавинообразным возрастанием проницаемости канала для определенных ионов.

Способностью изменять свою конформацию обладает другая часть пептидной цепи, представляющая собой аминокислотную последовательность в виде плотного шарика (клубка) на нити, располагающегося у выхода другого устья канала. При изменении знака заряда на мембране шарик закрывает выход из устья, канал становится непроницаемым (инактивированным) для иона. Инактивация потенциалзависимых ионных каналов может осуществляться с помощью других механизмов. Инактивация сопровождается прекращением перемещения ионов через канал и может протекать так же быстро, как активация, или медленно — в течение секунд и даже минут.

Рис. 3. Воротным механизм потенциалозависимых натриевых (вверху) и калиевых (внизу) каналов

Для восстановления исходных свойств ионных каналов после их инактивации необходимо возвратить исходные пространственную конформацию каналообразующего белка и положение ворот. Это достигается при восстановлении разности потенциалов мембраны (реполяризации) до уровня, характерного для состояния покоя клетки или спустя некоторое время после инактивации при сильном воздействии на мембрану. Переход из состояния инактивации в исходное (закрытое) состояние получил название реактивации канала. Будучи реактивированным, ионный канал вновь возвращается в состояние готовности к его повторному открытию. Реактивация потенциалзависимых каналов мембраны также может быть быстрой и медленной.

Потенциалзависимые ионные каналы обычно являются высокоселективными и играют решающую роль в возникновении возбуждения (генерации потенциалов действия), передаче информации по нервным волокнам в виде электрических сигналов, инициировании и регуляции сокращения мышц. Эти каналы широко представлены в мембранах афферентных, эфферентных нервных волокон, в мембранах поперечно-полосатых и гладких миоцитов.

Потенциапзависимые ионные каналы встроены в мембрану нервных окончаний чувствительных нервов (дендритов), иннервирующих пульпу зуба, слизистую оболочку полости рта, где их открытие обеспечивает преобразование рецепторного потенциала в нервный импульс и его последующее проведение по афферентному нервному волокну. С помощью этих импульсов в ЦНС передается информация о всех видах сенсорных ощущений, возникших у человека в полости рта (вкус, температура, механические давления, боль). Подобные каналы обеспечивают возникновение нервных импульсов на мембране аксонного холмика нейронов и его проведение по эфферентным нервным волокнам, преобразование постсинаптических потенциалов в потенциалы действия постсинаптических эффекторных клеток. Примером таких процессов может быть генерация нервных импульсов в моторных нейронах ядра тройничного нерва, которые затем передаются по его эфферентным волокнам к жевательным мышцам и обеспечивают инициирование и регуляцию жевательных движений нижней челюсти.

При исследовании тонких механизмов функционирования потенциалзависимых ионных каналов было выявлено, что существуют вещества, способные блокировать работу этих каналов. Одним из первых среди них было описано вещество тетродотоксин — сильнейший яд, образующийся в организме рыбы фугу. Под его действием наблюдалась блокада потенциалзависимых натриевых каналов в эксперименте, а при его введении в организм животных отмечались потеря чувствительности, расслабление мышц, обездвиженность, остановка дыхания и смерть. Такие вещества получили название блокаторов ионных каналов. Среди них лидокаин, новокаин, прокаин — вещества, при введении которых в организм в небольших дозах развивается блокада потенциапзависимых натриевых каналов нервных волокон и блокируется передача в ЦНС сигналов от болевых рецепторов. Эти вещества широко используются в медицинской практике в качестве местных обезболивающих средств.

Перемещение ионов через ионные каналы не только является основой перераспределения зарядов на мембранах и формирования электрических потенциалов, но и может оказывать влияние на протекание многих внутриклеточных процессов. Такое влияние на экспрессию генов, контролирующих синтез каналообразующих белков, не ограничено только клетками возбудимых тканей, но имеет место во всех клетках организма. Идентифицирована большая группа заболеваний, причиной которых является нарушение структуры и функции ионных каналов. Такие заболевания отнесены к группе «каналопатий». Очевидно, что знание строения и функций ионных каналов необходимо для понимания природы «каналопатий» и поиска их специфической терапии.

Лигандзависимые ионные каналы

Они обычно формируются белковыми макромолекулами, которые могут одновременно выполнять функцию ионных каналов и рецепторную функцию по отношению к определенным лигандам. Поскольку одна и та же макромолекула может одновременно выполнять эти две функции, то за ними закрепились разные названия — например, синаптический рецептор или лигандзависимый канал.

В отличие от потенциалзависимого ионного канала, открытие которого осуществляется при изменении конформации активационных ворот в условиях снижения трансмембранной разности потенциалов, лигандзависимые ионные каналы открываются (активируются) при взаимодействии пептидной (рецепторной) цепи белковой молекулы с лигандом — веществом, к которому рецептор имеет высокое сродство (рис. 4).

Рис. 4. Лигандзависимый ионный канал (никотинчувствительный ацетилхолиновый рецептор — н-ХР): а неактивный; 6 — активированный

Лигандзависимые ионные каналы обычно локализованы в постсинаптических мембранах нервных клеток и их отростков, а также мышечных волокон. Типичными примерами лигандзависимых ионных каналов являются каналы постсинаптических мембран, активируемые ацетилхолином (см. рис. 4), глутаматом, аспартатом, гамма-аминомасляной кислотой, глицином и другими синаптическими нейромедиаторами. Обычно название канала (рецептора) отражает тип нейро- медиатора, который в естественных условиях является его лигандом. Так, если это каналы нервно-мышечного синапса, в котором используется нейромедиатор ацетилхолин, то используется термин «ацетилхолиновый рецептор», а если он является к тому же чувствительным к никотину, то его называют никотинчувствительным, или просто н-ацетилхолиновым, рецептором (н-холинорецептор).

Обычно постсинаптические рецепторы (каналы) избирательно связываются только с одним типом нейромедиатора. В зависимости от типа и свойств взаимодействующих рецептора и нейромедиатора каналы избирательно изменяют свою проницаемость для минеральных ионов, но при этом они не являются строго селективными каналами. Например, лигандзависимые каналы могут изменять проницаемость для катионов Na+ и К+ или для К+ и анионов СI+. Такая избирательность связывания лиганда и изменения ионной проницаемости генетически закреплена в пространственной структуре макромолекулы.

Если взаимодействие медиатора и рецепторной части макромолекулы, формирующей ионный канал, непосредственно сопровождается изменением проницаемости канала, то в течение нескольких миллисекунд это приводит к изменению проницаемости постсинаптической мембраны для минеральных ионов и величины постсинаптического потенциала. Такие каналы названы быстрыми и локализуются, например, в постсинаптической мембране аксо-дендритных возбуждающих синапсов и аксосоматических тормозных синапсов.

Существуют медленные лигандзависимые ионные каналы. В отличие от быстрых каналов их открытие опосредованно не прямым взаимодействием нейромедиатора с макромолекулой- рецептором, а цепочкой событий, включающих активацию G-белка, его взаимодействие с GTP, повышение уровня вторичных посредников во внутриклеточной передаче сигнала нейромедиатора, которые, фосфорилируя ионный канал, приводят к изменению его проницаемости для минеральных ионов и соответствующему изменению величины постсинаптического потенциала. Вся описанная цепочка событий осуществляется уже за сотни миллисекунд. С такими медленными лигандзависимыми ионными каналами мы встретимся при изучении механизмов регуляции работы сердца, гладких мышц.

Особым типом являются каналы, локализованные в мембранах эндоплазматичсского ретикулума гладкомышечной клетки. Их лигандом является вторичный посредник внутриклеточной передачи сигнала инозитол-три-фосфат- ИФЗ.

Описаны ионные каналы, которые характеризуются некоторыми структурными и функциональными свойствами, присущими как потенциалзависимым, так и лигандзависимым ионным каналам. Они являются потенциалнечувствительными ионными каналами, состояние воротного механизма которых контролируется циклическими нуклеотидами (цАМФ и цГМФ). При этом циклические нуклеотиды связываются с внутриклеточной СООН-терминалыо каналообразующей молекулы белка и активируют канал.

Эти каналы характеризуются меньшей избирательностью проницаемости для катионов и способностью последних оказывать влияние на проницаемость друг друга. Так, ионы Са 2+ , поступая через активированные каналы из внеклеточной среды, блокируют проницаемость каналов для ионов Na 2+ . Одним из примеров таких каналов являются ионные каналы палочек сетчатки глаза, проницаемость которых для ионов Са 2+ и Na 2+ определяется уровнем цГМФ.

Лигандзависимые ионные каналы широко представлены в мембранных структурах, обеспечивающих синаптическую передачу сигналов от ряда сенсорных рецепторов в ЦНС; передачу сигналов в синапсах нервной системы; передачу сигналов нервной системы к эффекторным клеткам.

Уже отмечалось, что непосредственная передача команд нервной системы ко многим эффекторным органам осуществляется с помощью нейромедиаторов, активирующих лигандзависимые ионные каналы в постсинаптических мембранах. Однако их лигандами (агонистами или антагонистами) могут быть и вещества экзогенной природы, которые в ряде случаев используются в качестве лекарственных веществ.

Например, после введения в организм вещества диплацина, сходного по своей структуре с нейромедиатором апетилхолином, последует продолжительное открытие лигандзависимых ионных каналов нервно-мышечных синапсов, которые перестают передавать нервные импульсы с нервных волокон к мышцам. Наступает релаксация скелетных мышц организма, которая может понадобиться во время проведения сложных хирургических операций. Диплацин и другие вещества, способные изменять состояние лигандзависимых ионных каналов и блокировать передачу сигналов в нервно-мышечных синапсах, получили название миорелаксантов.

Рис. 5. Каналы щелевых контактов между двумя плотно контактирующими клетками

В медицинской практике используются многие другие лекарственные вещества, оказывающие влияние на состояние лигандзависимых ионных каналов клеток различных тканей.

Каналы щелевых (плотных) контактов клеток

Каналы щелевых контактов формируются в области контакта двух соседних клеток, очень близко прилежащих друг к другу. В мембране каждой контактирующей клетки шесть белковых субъединиц, получивших название коннексины, формируют гексагональную структуру, в центре которой образуется пора или ионный канал — коннексон (рис. 5).

Зеркальная структура образуется в месте контакта в мембране соседней клетки, и ионный канал между ними становится общим. Через такие ионные каналы из клетки в клетку могут перемещаться различные минеральные ионы, в том числе ионы Са 2+ , а также низкомолекулярные органические вещества. Каналы щелевых контактов клеток обеспечивают передачу информации между клетками миокарда, гладких мышц, сетчатки глаза, нервной системы.

Натриевые каналы

В клетках организма широко представлены потенциалзависимые, потенциалнезависимые (лигандзависимые, механочувствительные, пассивные и др.) натриевые каналы.

Потенциалзависимые натриевые каналы

Они состоят из одной а-субъединицы, формирующей канал, и двух β-субъединиц, модулирующих ионную проницаемость и кинетику инактивации натриевых каналов (рис. 6).

Рис. 6. Двухмерная структура а-субъединицы потенциал-зависимого натриевого канала. Описание в тексте

Как видно из рис. 6, а-субъединица представлена четырьмя однотипными доменами, состоящими из шести спирализованных трансмембранных сегментов, соединенных аминокислотными петлями. Петли, соединяющие 5-й и 6-й сегменты, окружают пору канала, а в составе 4-го сегмента содержатся положительно заряженные аминокислоты, которые являются сенсорами разности потенциалов на мембране и управляют положением воротного механизма при сдвигах трансмембранного потенциала.

В потенциалзависимых натриевых каналах имеются два воротных механизма, один из них — активационный (при участии 4-го сегмента) обеспечивает открытие (активацию) канала при деполяризации мембраны, а второй (при участии внутриклеточной петли между 3-м и 4-м доменами) — его инактивацию при перезарядке мембраны. Поскольку оба этих механизма быстро изменяют положение ворот канала, то потенциалзависимые натриевые каналы являются быстрыми ионными каналами и имеют определяющее значение для генерации потенциалов действия в возбудимых тканях и для их проведения по мембранам нервных и мышечных волокон.

Эти каналы локализуются в цитоплазматических мембранах аксонного холмика нейронов, в дендритах и аксонах, в мембране околосинаптичсской области нервно-мышечного синапса, в сарколемме волокон поперечно-полосатых мышц и сократительного миокарда. Плотность распределения натриевых каналов в этих структурах различна. В миелинизированных нервных волокнах они сосредоточены главным образом в области перехватов Ранвье, где их плотность достигает около 10 000 каналов на квадратный микрон площади, а в немиелинизированных волокнах каналы распределены более равномерно с плотностью около 20 каналов на ту же площадь. Эти каналы практически отсутствуют в структуре мембран тела нервной клетки, в мембране нервных окончаний, непосредственно формирующих сенсорные рецепторы, и в постсинаптических мембранах эффекторных клеток.

Среди потенциалзавиеимых натриевых каналов различают уже более девяти подтипов, отличающихся свойствами а-субъединиц, имеющих определенную тканевую принадлежность и отличающихся различной чувствительностью к действию блокаторов. Так, например, подтип канала, образованного каналообразующим белком, синтез которого контролируется геном SCN4A, имеется в сарколемме полностью дифференцированных и иннервированных скелетных мышц и его блокагорами являются тетродотоксин, сакситоксин и ц-конотоксины. В большинстве случаев а-субъединицы чувствительны к действию тетродотоксина, который в микромолярных концентрациях блокирует поры и тем самым вход в натриевые каналы.

Известны токсины натриевых каналов, вызывающие замедление скорости их инактивации. Например, токсин морской анемоны (АТХ) и а-токсин скорпиона (ScTX) вызывают замедление инактивации, связываясь с аминокислотными остатками петли S3-S4 4-го сегмента.

Синтезированы и широко используются в медицине для блокады быстрых потенциалзависимых натриевых каналов вещества, получившие название анестетиков (новокаин, дикаин, лидокаин, совкаин, прокаин и др.). Анестезия при блокаде ими натриевых каналов достигается за счет устранения возможности генерации нервных импульсов в афферентных нервных волокнах и тем самым блокады проведения сигналов от сенсорных болевых рецепторов в ЦНС.

Обнаружено, что изменение структуры натриевых каналов может вести к развитию ряда заболеваний. Так, например, изменение структуры канала, контролируемого геном SCNlb, ведет к развитию генерализованных форм эпилепсии и судорог при повышении температуры тела (фебрильных судорог).

Многие микроорганизмы образуют в организме человека токсины — вещества, под действием которых в поражаемых клетках блокируются ионные каналы, что может сопровождаться нарушением ионного баланса и гибелью клетки. Другие микроорганизмы, наоборот, своими токсинами (перфоринами) формируют в мембране клетки ионные каналы. В частности, токсин палочки сибирской язвы, вызывающей у человека особо опасную инфекцию, атакуя клетку, образует в ее мембране новые поры (каналы), через которые в клетку проникают другие токсины. Действием этих токсинов обусловлена гибель атакованных клеток и высокая смертность при этом заболевании. Учеными синтезировано вещество β-циклодекстрин, близкое по пространственной структуре к форме образующегося канала. Это вещество блокирует каналы, образуемые токсином микроорганизма, предотвращает поступление токсинов в клетки и спасает от гибели экспериментальных животных, зараженных палочкой сибирской язвы.

Потенциалнезависимые натриевые каналы

Лигандзависимые натриевые каналы. Их общее строение и свойства рассмотрены выше при описании лигандзависимых ионных каналов. Этот тип натриевых каналов широко представлен в организме натриевыми каналами никотинчувствительного холинорецептора постсинаптичсской мембраны нервно-мышечного синапса, межнейронных синапсов ЦНС и автономной нервной системы (преганглионарного и ганглионарного нейронов). Лигандзависимые натриевые каналы локализованы в постсинаптических мембранах других возбуждающих (глутамат- и аспартатергических) синапсов ЦНС. Они играют решающую роль в возникновении в синапсах возбуждающего постсинаптического потенциала и передаче сигналов между нейронами и между нейронами и эффекторными клетками.

Лигандзависимые натриевые каналы постсинаптической мембраны не являются строго селективными и могут быть проницаемы одновременно для нескольких ионов: натрия и калия, натрия и кальция.

Потенциалнезависимые натриевые каналы, управляемые вторичными посредниками. Состояние этих натриевых каналов может управляться с помощью цГМФ (фоторецеиторы), цАМФ (обонятельные рецепторы) и с помощью субъединиц G-белка (миокард).

Механочувствительные натриевые каналы. Представлены в механорецепторах стенок сосудов, сердца, полых внутренних органов, проприорсцепторах поперечно-полосатых мышц, мембране гладких миоцитов. С их участием в сенсорных рецепторах осуществляется преобразование энергии механического воздействия в колебание разности потенциалов — рецепторный потенциал.

Пассивные натриевые канаты. Содержатся в цитоплазма- тических мембранах возбудимых клеток. Проницаемость этих каналов для ионов Na+ небольшая, но через них ионы Na диффундируют по градиенту концентрации из внеклеточных пространств в клетки и несколько деполяризуют мембрану. Более существенно проницаемы в покос натриевые каналы цитоплазматической мембраны гладких миоцитов. Они деполяризуют ее на большую величину (потенциал покоя около 50 мВ), чем мембрану миоцитов поперечно-полосатой мускулатуры (потенциал покоя около 90 мВ). Таким образом, пассивные натриевые каналы участвуют в формировании мембранного потенциала покоя.

Натриевые обменники. Ранее был описан натрий-кальциевый обменный механизм, или натрий-кальциевый обменник, который играет важную роль в удалении ионов кальция из сократительных кардиомиоцитов.

Натрий-протонный обменник. Представляет собой особый тип каналообразующего белка, который удаляет протоны водорода из внутриклеточных пространств в обмен на поступление в клетку ионов натрия. Удаление протонов активируется при понижении в клетке рН.

Синтез белков, образующих обменные натриевые каналы, контролируется пятью генами, которые обозначаются как NAH1 -NAH5.

Калиевые каналы

Существуют потенциалзависимые и потенциалнечувствительные калиевые каналы. Среди последних выделяют пассивные, лигандзависимые и другие типы калиевых каналов. Как правило, калиевые каналы имеются в мембранах тех же клеток и тканей, в которых содержатся натриевые каналы. Одной из причин такого параллелизма в расположении этих ионных каналов является то, что ионы Na+ и К+ являются важнейшими катионами, от характера распределения и перемещения которых зависит возникновение и изменение электрических потенциалов как одной из важнейших форм передачи информационных сигналов в организме.

Существует целое суперсемейство калиевых ионных каналов, которые подразделяются но особенностям структуры, месту локализации и свойствам каналов на отдельные семейства, типы и подтипы. Описано более трех десятков калиевых каналов, и дать их подробную характеристику не представляется возможным. Поэтому в качестве примеров будут приведены описания тех семейств и типов ионных каналов, которые имеют отношение прежде всего к сигнальным путям и механизмам контроля нервных и мышечных процессов.

Пассивные калиевые каналы

Известно, что в состоянии покоя мембраны возбудимых клеток относительно хорошо проницаемы для ионов К и плохо для ионов Na+. Поскольку носителями трансмембранных электрических токов являются ионы, то, измеряя электрический ток, протекающий через мембрану клетки, можно судить о состоянии ионных каналов. Оказалось, что трансмембранный электрический ток, обусловленный диффузией ионов К по градиенту концентрации из клетки, составляет около двух пикоампер и имеет пульсирующий характер, а средняя продолжительность пульсации составляет несколько миллисекунд. Из этого наблюдения сделан вывод, что калиевые каналы в покоящейся клетке могут спонтанно открываться и закрываться, обеспечивая условия для диффузии через них ионов К из клетки и формирования на мембране потенциала покоя.

Потенциалзависимые калиевые каналы

О существовании потенциалзависимых калиевых каналов в мембранах клеток возбудимых тканей стало известно после того, как было установлено, что их кинетика активации отличается от таковой для потенциалзависимых натриевых каналов и к тому же они селективно блокируются другими блокаторами. Калиевые каналы активируются так же, как и натриевые, при деполяризации мембраны клетки до критического уровня, но при этом скорость выхода ионов К+ из клетки нарастает значительно медленнее, чем скорость входа ионов Na+ в клетку.

Селективный фильтр калиевого канала располагается с внутренней стороны устья поры в отличие от наружного расположения подобного фильтра в натриевых каналах (рис. 7). Существование селективности этих каналов по отношению к катионам Na+ и К+ и различных специфических блокаторов — тетродотоксина (для натрия) и тетраэтиламмония (для калия) — свидетельствует о различном строении этих каналов.

Потенциалзависимые калиевые каналы являются тетрамерами и состоят из четырех субъсдиниц, образующих пору в центре.

Потенциалзависимые калиевые каналы локализуются в мембранах как возбудимых, так и невозбудимых клеток. Они играют важную роль в скорости восстановления (реполяризации)потенциала на мембране после ее деполяризации и, таким образом, в контроле формы и частоты генерации потенциалов действия. Медленные калиевые каналы блокируются тстра- этиламмонием, 4-аминопиридином, фенциклидином, 9-аминоакридином.

Рис. 7. Калиевый канал: а — слева — двухмерная структура а-субъединицы; справа — схема канала; б — электроногра.мма калиевых каналов в цитопламатической мембране.

Кроме медленных калиевых каналов описаны быстрые потенциалзависимые калиевые каналы, кинетика открытия которых сходна с таковой для быстрых потенциалзависимых натриевых каналов. Эти калиевые каналы быстро открываются при деполяризации, затем полностью инактивируются, а для их реактивации требуется не просто реполяризовать мембрану, но на некоторое время гиперполяризовать ее.

В соответствии с названиями кодирующих синтез и сборку каналообразующих молекул генов выделяют шесть KCN типов с подтипами KCN А, В, С, Е и одно семейство KCNQ ионных каналов. Каналы последнего семейства экспрессированы в миокарде.

Лигандзависимые калиевые каналы

Представлены большим числом каналов, чувствительных к действию разнообразных лигандов.

Одним из типов многочисленных лигандзависимых калиевых каналов являются каналы, ассоциированные с мускаринчувствительными ацетилхолиновыми рецепторами. Эти каналы активируются ацетилхолином. Каналы могут блокироваться брадикинином и ионами бария. Есть два подтипа этих каналов: инактивирующиеся мускарином и активирующиеся им. Последний локализован в клетках водителя ритма сердца.

Свойствами лигандзависимого калиевого канала обладают неселективные потенциалнезависимые катионные каналы, сочетающие признаки каналов и никотинчувствительных ацетил холиновых рецепторов постсинаптической мембраны нервно-мышечного синапса. При взаимодействии белка-каналообразователя с ацетилхолином происходит открытие этого неселективного канала, через который ионы Na+ входят в мышечную клетку, а ионы К из нее выходят. Различная скорость перемещения этих ионов обеспечивает возникновение деполяризации постсинаптической мембраны, не перерастающей в потенциал действия непосредственно на этой мембране.

Выделены АТФ-чувствительные калиевые каналы, которые ингибируются и активируются действием АТФ.

Отдельное семейство калиевых каналов составляют так называемые входные выпрямляющие калиевые каналы (вентили), или входные выпрямители(inward rectifying ; inward rectifier ). В воротном механизме выпрямляющих калиевых каналов нет сенсора напряжения. Функциональное значение этих каналов состоит в их влиянии на возбудимость клеток-водителей ритма, мышечных клеток и нейронов.

Семейство выпрямляющих входных калиевых каналов в соответствии с названиями генов, их кодирующих, подразделяется более чем на 15 типов. Примером специфического значения выпрямляющих входных калиевых каналов и, в частности каналов KCNJ 3, 5, 6 и 9 (другое обозначение Kir-каналы) может быть их специфическая роль в регуляции частоты сердечных сокращении через ассоциацию этих каналов с G-белком и мускаринчувствительными ацетилхолиновыми рецепторами клеток — водителей ритма сердца.

Известны потенциалнечувствительные активируемые натрием калиевые каналы.

Описаны особые потенциалнечувствительные калиевые каналы, чувствительные к изменению рН, которые имеются в р-клетках островков поджелудочной железы и выполняют в них роль сенсора глюкозы. Известны также калиевые каналы, чувствительные к изменению объема клеток.

Кальциевые каналы

Семейство кальциевых каналов широко представлено в клетках нервной и мышечной тканей. Основными местами их локализации являются мембраны пресинаптических терминалей саркоплазматичсского и эндоплазматичсского ретикулума мышц, сарколеммы кардиомиоцитов и мембраны клеток других тканей.

Кальциевые каналы по способам управления проницаемостью подразделяют на потенциалзависимые, пассивные, лигандзависимые, механочувствительные и др.

Кальциевые каналы подразделяют по скорости инактивации на каналы Т-типа (transient — скоротечный), L-типа (медленные). В зависимости от тканевой принадлежности и чувствительности к действию токсинов выделяют каналы В-типа (brain — мозг), N-типа (neuronal — нейрональный), Р-типа (purkinje cell — клетка Пуркинье) и R-типа (резистентный к действию токсинов).

Потенциалзависимые кальциевые каналы

Они формируются олигомерным белком, обычно состоящим из пяти субъединиц а1, а2, β, у и δ. Собственно ионный канал формирует а-субъединица, имеющая большую степень сходства аминокислотного состава и структуры с аналогичной субъединицей потенциалзависимых натриевых и калиевых каналов (см. рис. 6, рис. 7).

Потенциалзависимый кальциевый канал обладает селективной проницаемостью для ионов Са 2+ . Селективность обеспечивается наличием поры, формирующей селективный фильтр.

Пора образована сегментами а 1 -субъединицы, поэтому, учитывая сходство се строения с таковой для каналов одновалентных катионов, следовало бы ожидать, что кальциевый канал должен быть проницаем для ионов Na+ и К+. Такое его свойство действительно имеет место при устранении кальция из внеклеточной среды.

В естественных условиях селективность по отношению к кальцию обеспечивается в канале наличием в поре канала двух мест связывания кальция. Одно из них образовано группой остатков глутамата, и при низкой концентрации кальция он оказывается сильно связанным с этим местом поры канала и канал для кальция становится слабо проницаемым. При повышении концентрации кальция возрастает вероятность занятия кальцием второго места связывания; возникающие при этом силы электростатического отталкивания между ионами Са 2+ сильно сокращают время пребывания ионов на местах связывания. Высвобождающийся кальций диффундирует через активированный канал в клетку по электрохимическому градиенту.

Потенциалзависимые кальциевые каналы различаются пороговыми значениями сдвигов разности потенциалов, при которых они активируются. Каналы Т-типа активируются малыми сдвигами напряжения на мембране, L- и Р-типов характеризуются высокими порогами сдвигов напряжениями, вызывающими их активацию.

Потенциалзависимые кальциевые каналы играют важную роль в осуществлении ряда жизненно важных процессов в организме. Их активация и поступление кальция в пресинаптическую терминаль являются необходимыми для осуществления синаптической передачи сигналов.

Вход кальция через кальциевые каналы в пейсмекерную клетку необходим для генерации потенциалов действия в клетках водителях ритма сердца и обеспечения его ритмического сокращения. Потенциалзависимые кальциевые каналы регулируют поступление кальция в саркоплазму волокон миокарда, скелетной мускулатуры, гладких миоцитов сосудов и внутренних органов, контролируя инициирование, скорость, силу, продолжительность их сокращения и тем самым движения, насосную функцию сердца, артериальное давление крови, дыхание и многие другие процессы в организме.

Пассивные кальциевые каналы

Имеются в цитоплазматических мембранах гладких миоцитов. Они проницаемы для кальция в состоянии покоя, и кальций наряду с ионами К+ и Na+ участвует в создании трансмембранной разности потенциалов или потенциала покоя гладких миоцитов. Кальций, поступающий по этим каналам в гладкий миоцит, является источником пополнения его запасов в эндоплазматическом ретикулуме, используется в качестве вторичного посредника при передаче внутриклеточных сигналов.

Кальций в состоянии покоя может перемещаться из клетки в клетку через каналы щелевых контактов. Эти каналы не являются селективными для кальция, и через них может одновременно осуществляться межклеточный обмен другими ионами и органическими веществами небольшой молекулярной массы. Кальций, поступающий в клетки через каналы щелевых контактов, играет важную роль в возникновении возбуждения, инициировании и синхронизации сокращений миокарда, матки, сфинктеров внутренних органов, поддержании тонуса сосудов.

Лигандзависимые кальциевые каналы

При изучении механизмов запуска и регуляции сокращений миокарда и гладких мыщц оказалось, что они зависят от поступления в мио- цит кальция как из внеклеточной среды, так и из его внутриклеточных хранилищ. При этом поступление кальция в саркоплазму может контролироваться изменением разности потенциалов на сарколемме и активацией потенциалзависимых кальциевых каналов и(или) действием на мембрану саркоплазматического ретикулума ряда сигнальных молекул.

Лигандзависимые кальциевые каналы локализованы в цитоплазматических мембранах гладких миоцитов. Лигандами их рецепторов могут выступать гормоны: вазопрессин, окситоцин, адреналин; нейромедиатор норадреналин; сигнальные молекулы: ангиотензин 2, эндотелии 1 и другие вещества. Связывание лиганда с рецептором сопровождается активацией кальциевого канала и входом кальция в клетку из внеклеточной среды.

В кардиомиоцитах для инициации мышечного сокращения необходимо первоначально активировать потенциалзависимые кальциевые каналы Т-типа, затем L-типа, открытие которых обеспечивает поступление в клетку некоторого количества ионов Са 2+ . Вошедший в клетку кальций активирует рианодиновый рецептор (RYR) каналообразующего белка, вмонтированного в мембране саркоплазматичсского ретикулума кардиомиоцита. В результате активации канала его проницаемость для кальция возрастает и последний по градиенту концентрации диффундирует в саркоплазму. Таким образом, ионы Са 2+ выступают в качестве своеобразных лигандов, активирующих рианодиновые рецепторы и тем самым кальциевые каналы. В результате входящий в клетку внеклеточный кальций выполняет роль триггера для выделения кальция из его основного внутриклеточного хранилища.

Кальциевые каналы могут одновременно проявлять чувствительность к изменениям разности потенциалов на цитоплазматической мембране и к действию лигандов. Например, L-тип потенциалзависимых кальциевых каналов чувствителен к дигидропиридину (нифедипину), фенилалкиламинам (верапамилу) и бензотиазепинам (дилтиазему). Этот тип каналов нередко называют дигидропиридиновыми рецепторами. Это название предполагает, что L-кальциевый канал является лигандзависимым, хотя в действительности он потен циалзависимый канал.

Р-тип каналов устойчив к действию коногоксинов и лекарств, к которым чувствительны другие типы кальциевых каналов.

Функциональные свойства а1,-субъединиц потенциалзависимых кальциевых каналов могут модулироваться при их фосфорилировании, и таким образом может регулироваться состояние ионной проницаемости кальциевых каналов, например, в миокарде.

Особым типом лигандзависимых ионных кальциевых каналов являются каналы, локализованные в мембранах эндоплазматического ретикулума гладкомышечной клетки, состояние проницаемости которых контролируется внутриклеточным уровнем вторичного посредника — ИФЗ. На примере этих каналов мы встречаемся со случаем, когда внеклеточная сигнальная молекула-агонист, активируя рецептор плазматической мембраны гладкомышечной клетки-мишени, включает инозитолфосфатный путь внутриклеточной передачи сигнала, который в свою очередь через действие ИФЗ выходит на активацию следующего каналообразующего белка в мембране органеллы клетки. Вся эта цепочка событий передачи сигнала завершается выходом из внутриклеточных депо ионов Са 2+ , запускающих и контролирующих молекулярный механизм сокращения гладкомышечной клетки.

Механочувствительные кальциевые каналы

Локализуются в плазматической мембране гладких миоцитов стенки сосудов, миоиитов внутренних органов, эндотелия сосудов, эпителия бронхов. Эти каналы могут быть ассоциированы с гликопротеиновыми механорецепторами. В ответ на механическое воздействие (например, растяжение стенки сосуда давлением крови) повышается проницаемость для ионов Са 2+ . Механочувствительные каналы не обладают высокой селективностью и изменяют их проницаемость одновременно для ряда катионов. Поступление в гладкомышечную клетку кальция и натрия вызывает деполяризацию ее мембраны, открытие потенциалзависимых кальциевых каналов, увеличение входа кальция и сокращение гладкого миоцита.

Эти события составляют часть механизма приспособления тонуса сосудов и регуляции кровотока к изменяющимся величинам давления крови в сосуде и скорости кровотока (миогенная регуляция). Кроме того, механочувствительные кальциевые каналы участвуют в реализации механизмов стресс-релаксации сосудов при длительном повышении давления крови.

Хлорные каналы

Хлорные каналы имеются в плазматических мембранах большинства клеток. Они играют важную роль в поддержании в покоящейся клетке трансмембранной разности потенциалов и их сдвигах при изменении функциональной активности клеток. Хлорные каналы участвуют в регуляции объема клеток, трансэпителиального переноса веществ, секреции жидкости секреторными клетками.

В соответствии с механизмами активации выделяют три суперсемейсгва хлорных каналов: потенциалзависимые, лигандзависимые и другие потенциалнечувствительные хлорные каналы.

Потенциал зависимые хлорные каналы. Локализуются в мембранах возбудимых и эпителиальных клеток. Состояние проницаемости этих каналов управляется величиной трансмембранной разности потенциалов.

Потенциал зависимая проницаемость хлорных каналов неодинакова в разных тканях. Так, в мембране аксонов зависимость проницаемости хлорных каналов от разности потенциалов незначительна и существенно не влияет на изменение величины потенциала действия при возбуждении, а в скелетных мышцах эта зависимость проницаемости хлорных каналов выше.

Канал CLC1 является типичным представителем хлорных каналов сарколеммы мышечного волокна скелетной мышцы. Канал проявляет проницаемость во всем диапазоне изменений трансмембранных напряжении в состоянии покоя, активируется при деполяризации и инактивируется при гиперполяризации мембраны.

Лигандзависимые хлорные каналы. Преимущественно экспрессируются в нервной ткани. Состояние проницаемости этих каналов для хлора управляется прежде всего внеклеточными лигандами, но они могут быть чувствительными к концентрации кальция внутри клетки, активироваться G-белками и цАМФ. Каналы этого типа широко распространены в пост- синаптических мембранах и используются для осуществления постсинаптического торможения. Управление состоянием проницаемости канала осуществляется путем активации каналов лигандами — тормозными нейромедиаторами (у-аминомасляной кислотой и глицином).

Потенциалнечувствительные хлорные каналы. Включают пассивные хлорные каналы, АТФ-чувствительные каналы и трансмембранный регулятор проводимости интерстициального фиброза (cystic fibrosis transmembrane conductance regulator — CFTR).

CFTR, по-видимому, состоит из собственно хлорного канала и канала-регулятора, представленного специальным регуляторным доменом (Р-доменом). Регуляция ионной проводимости этих каналов осуществляется путем фосфорилирования регуляторного домена цАМФ-зависимой протеинкиназой. Нарушение структуры и функции этого канала ведет к развитию тяжелого заболевания, сопровождаемого нарушением функции многих тканей — интерстициального фиброза.

Аквапорины

Аквапорины (от лат. aqua — вода, греч.porus — канал, пора) — белки, образующие водные каналы и обеспечивающие трансмембранный перенос воды. Аквапорины представлены интегральными, тетрамерными белками мембран, мономер которых имеет массу около 30 кДа. Таким образом, каждый аква- порин формирует четыре водных канала (рис. 8).

Особенностью этих каналов является то, что водные молекулы в них могут перемещаться в изоосмотических условиях, т.е. когда на них не действуют силы осмотического градиента. Для обозначения аквапоринов используется сокращение AQP. Выделен и описан ряд типов аквапоринов: AQP1 — в мембранах эпителия проксимальных почечных канальцев, нисходящем отделе петли Генле; в мембранах эндотелия и гладких миоцитов кровеносных сосудов, в структурах стекловидного тела; AQP2 — в мембранах эпителия собирательных трубок. Этот аквапорин оказался чувствительным к действию антидиуретического гормона, и на этом основании его можно рассматривать как лигандзависимый водный канал. Экспрессия гена, контролирующего синтез этого аквапорина, регулируется антидиуретическим гормоном; AQP3 обнаружен в мембранах клеток роговицы глаза; AQP4 — в клетках мозга.

Рис. 8. Структура водного канала AQP1: а — пептидные цепи, формирующие канал; б — канал в собранном виде: A, В, С, D, Е — участки белковой цепи

Оказалось, что AQP1 и AQP4 играют важную роль в образовании и циркуляции цереброспинальной жидкости. Аквапорины содержатся в эпителии желудочно-кишечного тракта: AQP4 — в желудке и тонкой кишке; AQP5 — в слюнных железах; AQP6 — в тонкой кишке и поджелудочной железе; AQP7 — в тонкой кишке; AQP8, AQP9 — в печени. Часть аквапоринов транспортирует не только молекулы воды, но и растворимые в ней вещества органической природы (кислород, глицерин, мочевина). Таким образом, аквапорины играют в организме важную роль в обмене воды и нарушение их функции может быть одной из причин формирования отеков мозга, легких и развития почечной и сердечной недостаточности.

Знание механизмов транспорта ионов через мембраны и способов влияния на этот транспорт является непременным условием не только для понимания механизмов регуляции жизненных функций, но и для правильного выбора лекарственных препаратов при лечении большого числа заболеваний (гипертонической болезни, бронхиальной астмы, сердечных аритмий, нарушений водно-солевого обмена и др.).

Для понимания механизмов регуляции физиологических процессов в организме необходимо знание не только структуры и проницаемости клеточных мембран для различных веществ, но и структуры и проницаемости более сложных структурных образовании, находящихся между кровью и тканями различных органов.



Понравилась статья? Поделиться с друзьями: