Nvidia geforce gtx 480 сравнение. Обзор и тестирование NVIDIA GTX480. DMark Vantage: Feature тесты

Когда у любителя ресурсоёмких динамических приложений возникает желание насладиться прохождением очередной новинки игрового мира, он непременно задумается о возможностях собственного видеоадаптера, установленного в системном блоке. Ведь, как показывает практика, бюджетным устройствам и начальному игровому классу всё труднее приходится справляться с поставленными задачами. Выход тут один - приобрести видеокарту High-End класса GTX 480 и на 5-10 лет забыть о проблемах, связанных с торможением в ресурсоёмких игрушках. Характеристики, отзывы, обзор и сравнение с продуктами конкурента помогут покупателям сделать правильный выбор.

Технические характеристики

Чип с кодовым названием Fermi и маркировкой GF100 построен с использованием 40-нанометровой технологии, которая позволила производителю не только разместить на кристалле больше транзисторов (3,2 миллиарда), а и снизить энергопотребление игрового устройства GeForce GTX 480. Характеристики тепловыделения не превышают 250 Ватт, что для High-End класса является великолепным показателем. Видеоадаптер оснащён четырьмя кластерами обработки графических данных, имеет 15 потоковых мультипроцессоров и 480 ядер CUDA. Графический процессор, в заводском исполнении, работает на частоте 700 МГц. Видеопамять создана на чипах GDDR5, имеет объём 1,5 Гб и работает по 384-битной шине. Эффективная частота памяти составляет 3696 МГц.

Поддерживаемые технологии

Слабым звеном в игровом видеоадаптере является поддержка библиотек API DirectX 11. Именно эта характеристика и портит многим потенциальным покупателям общее впечатление о продуктах с чипом GTX 480. К достоинствам можно отнести поддержку видеокартой шейдеров версии 5.0 и внедрение современных технологий, отвечающих за работу с 3D-виртуализацией (3D Vision, Blu Ray 3D и их аналоги).

Довольно интересное нововведение произвела компания Nvidia, внедрив в устройство технологию 3D Surround. Производитель уверяет, что теперь владельцам можно подключить к видеокарте три устройства для отображения видео и задействовать для просмотра изображения очки 3D Vision. Правда, судя по отзывам владельцев, данной технологии ещё далеко до совершенства, поэтому все эти новые разработки, которые связаны с 3D, вызывают лишь недовольства со стороны покупателей. Ведь никто не желает переплачивать за технологии, которые не будут использованы.

Раскрытие потенциала графического ускорителя

Для графического ускорителя GTX 480 характеристики производительности всей системы являются критичными. В первую очередь речь идёт о процессоре, который должен иметь частоту выше 3 ГГц и иметь на одной платформе 4 отдельных ядра. Производитель Nvidia в своих рекламных видеороликах использует кристалл Intel Core I7 (695 Extreme), соответственно, для раскрытия потенциала видеоадаптера, пользователь должен иметь в наличии аналогичный по производительности процессор.

К оперативной памяти никаких ПРЕТЕГЗИЙ нет, однако в своих отзывах пользователи уверяют, что большинству современных игрушек требуется не менее 8 Гб. Что касается жёсткого диска, то здесь всё понятно без комментариев - только твердотельный накопитель SSD сможет обеспечить достойную производительность всей системы. Возникнуть проблемы могут и с блоком питания. Эксперты рекомендуют обратить внимание не на мощность устройства (она должна быть не менее 750 Вт), а на наличие мощной 12-вольтовой линии, иначе из-за провала по питанию владелец может лишиться видеокарты.

Представитель мобильного рынка

Стоит отметить, что в ноутбуках используется видоизменённый графический ускоритель на базе чипа GTX 480. Характеристикиего значительно отличаются от дискретного устройства, созданного под персональные компьютеры. Во-первых, производитель уменьшил количество CUDA ядер с 480 до 352 штук, что значительно отразилось на общей производительности мобильной платформы (снижение порядка 20% при тестировании синтетическими тестами). Также производитель уменьшил пропускную способность шины памяти, ограничив её стандартными для большинства видеокарт среднего класса 256 битами.

Что касается задействованных технологий, включая поддержку современных библиотек, то здесь всё осталось без изменений. Естественно, большинству покупателей интересна производительность ноутбука, а не его возможности в работе с 3D. Поэтому данные изменения не остались незамеченными для многих пользователей и, судя по их отзывам, установленный чип вряд ли сможет привлечь к себе внимание многих покупателей.

Крылатые качели

После выхода на рынок видеоадаптеров 5-го поколения многие энтузиасты бросились проводить сравнения их с топовыми устройствами предыдущего класса, поэтому самым популярным в средствах массовой информации является сравнение: GTX 480 vs GTX 570. В своих отзывах многие владельцы графического ускорителя 4-го поколения уверяют окружающих, что компания Nvidia поступила с ними нечестно, ведь при изучении технических характеристик обоих устройств окажется, что они практически идентичны, но стоимость видеокарт разная (480 GTX дороже).

Удивительно, что при сравнении в синтетических тестах, видеоадаптер GTX 570 обходит по производительности флагмана 4-го поколения. Проводя по GTX 480 обзор производительности в ресурсоёмких динамических играх, можно сделать вывод: ситуация изменяется в корне. Любители таких приложений, как GTA 5, Metro 2033, Dirt 2 с топовым представителем 4-го поколения смогут насладиться игрой на максимальных настройках с большой частотой кадров. А вот владельцам GTX 570 удастся запустить приложение лишь с высоким качеством.

Шаг через поколение

Что касается сравнения GTX 480 vs GTX 650, то результат можно предсказать и без проведения каких-либо тестирований. Пусть последний представитель и 6-го поколения, однако, он относится к среднему игровому классу, и у него просто нет ни одного шанса вырвать победу у флагмана Nvidia 480 GTX. В синтетических тестах GTX 650 продемонстрирует показатели, которые окажутся минимум на 30-35% ниже, чем у противника.

Правда, в ресурсоёмких динамических играх ситуацию можно немного исправить, разогнав представителя 6-го поколения как по памяти, так и по ядру. Судя по отзывам энтузиастов, разрыв в производительности можно сократить вдвое. Вот только никто не мешает и владельцам GTX 480 поднять мощность видеоадаптера разгоном, а потенциал у флагмана есть, и он значительно больший, нежели у представителей недорогого сегмента. Если покупатель стоит перед таким выбором (взять 480 GTX или 650 GTX), то первый представитель Nvidia предпочтительнее, пусть он и старше своего оппонента на несколько лет.

Очевидное превосходство

Довольно странно может выглядеть сравнение флагмана 4-го поколения с представителем среднего игрового класса 700-й серии видеокарт. Однако есть отчаянные пользователи, желающие увидеть сравнение двух производительных устройств GTX 480 vs GTX 760. Логично предположить, что в результате перехода на новый техпроцесс (с 40 на 28 нанометров), представитель 7-й серии очень легко обойдёт конкурента во всех тестах, как синтетических, так и игровых.

А если взять во внимание, что производитель разместил на одном кристалле GTX 760 1152 процессора CUDA, то все сомнения сразу исчезнут. Не стоит забывать, что, начиная с 700-й серии, графические процессоры Nvidia прошли психологический барьер 1000 МГЦ и оснащают все видеокарты объёмом памяти не менее 2 Гб. Однозначно в таком сравнении у представителя GTX 480 просто нет шансов на победу.

В заключение

Подводя итоги по представителю High-End 4-го поколения, можно сделать несколько выводов. Во-первых, владельцам данного видеоадаптера нет смысла переходить на видеокарты 500-й и 600-й серии. Однако, если покупатель стоит перед выбором - взять графический ускоритель 7-го поколения или отдать предпочтение GTX 480, - отзывы владельцев и множество проведённых энтузиастами тестов рекомендуют приобретать видеокарту 7-й серии.

NVIDIA GeForce GTX 480 - империя наносит ответный удар!

Конец слухам и домыслам! Новейшие видеокарты NVIDIA на базе архитектуры Fermi наконец-то официально анонсированы. Пришло время узнать, что они из себя представляют и какие бойцовские качества проявят в борьбе за корону мощнейшего ускорителя 3D-графики

⇣ Содержание

Есть мнение, что все события вокруг нас развиваются циклично и обязательно повторяются во времени с некоторыми изменениями. Глядя на развитие событий вокруг графической архитектуры Fermi и видеочипов на её основе, невольно убеждаешься в справедливости этого утверждения. Дело в том, что последствия проблем, с которыми сейчас столкнулась NVIDIA при выпуске на рынок видеокарт на основе GPU Fermi, очень сильно напоминают о ситуации, сложившейся вокруг флагманского решения AMD трёхлетней давности - видеокарты Radeon HD 2900 XT. Вот как было дело. В конце 2006 года компания NVIDIA выпустила на рынок восьмое поколение своих видеокарт семейства GeForce. Флагманом линейки стал могучий по тем временам ускоритель NVIDIA GeForce 8800 GTX, который значительно опережал по производительности и технологичности топ-модель AMD тех времён – Radeon X1900 XTX. Чтобы успешно конкурировать с NVIDIA, компании AMD необходимо было создать новый топовый ускоритель, однако из-за череды технологических проблем новинка - Radeon HD 2900 XT, вышла примерно на полгода позже положенного срока. Аналогичная ситуация в конце 2009 года произошла с NVIDIA. С выходом первого ускорителя семейства AMD Radeon HD 5xxx - Radeon HD 5870, компания NVIDIA потеряла "майку лидера" среди одночиповых Hi-End решений, а затем, по мере расширения линейки графических ускорителей AMD, и вовсе начала сдавать позиции практически во всех сегментах рынка настольной графики. И вот спустя полгода компания NVIDIA наконец-то смогла наладить выпуск достаточного количества графических чипов новой архитектуры. Сегодня, 26 марта 2010 года, анонсированы новейшие графические ускорители NVIDIA GeForce GTX 470 и GeForce GTX 480. Старшая из этих видеокарт и стала объектом нашего пристального внимания. Не так давно мы уже публиковали материал, посвящённый особенностям архитектуры Fermi , поэтому сейчас не будем повторять уже сказанное, а поговорим лишь о том, что изменилось с тех времён. Вопреки ожиданиям, старший ускоритель семейства - NVIDIA GeForce GTX 480, получил не 512 ядер CUDA, как было заявлено ранее, а всего 480. Кроме того, изменения коснулись текстурных блоков, их количество равно 60, вместо заявленных ранее 64. А вот все 48 блоков ROP и обещанная ширина шины памяти в 384 бита остались на месте. Для подробного ознакомления с характеристиками новых ускорителей NVIDIA GeForce GTX 470 и GTX 480 обратимся к таблице:

GeForce GTX 285 GeForce GTX 470 GeForce GTX 480
Техпроцесс GPU, нм 55 40 40
Кластеры обработки графики, шт. 4 4
Кол-во потоковых мультипроцессоров 14 15
Кол-во ядер CUDA 240 448 480
Кол-во текстурных блоков 80 56 60
Кол-во блоков ROP 32 40 48
Частота GPU, МГц 648 607 700
Частота ядер CUDA, МГц 1476 1215 1401
Эффективная частота видеопамяти, МГц 2484 3348 3696
Объём видеопамяти, Мб 1024 1280 1536
Ширина шины памяти, бит 512 320 384
Пропускная способность видеопамяти, ГБ/с 159 133.9 177.4
Поддержка DirectX 10 11 11
Максимальный TDP, Вт 183 215 250
Рекомендованная мощность БП, Вт 550 550 600
Предельная температура GPU, °C 105 105 105
Рекомендованная розничная стоимость на момент анонса, долларов США 399 349 499

Из таблицы видно, что GeForce GTX 480 в значительной степени превосходит предыдущую топ-модель - GeForce GTX 285, практически по всем характеристикам. Особенно стоит отметить вдвое большее количество ядер CUDA, что несомненно положительно скажется на скорости выполнения сложных шейдеров. Также новые ускорители NVIDIA получили долгожданную поддержку DirectX 11. Кроме того, в GeForce GTX 470/480 поддерживается технология под названием NVIDIA Surround, аналогичная ATI Eyefinity. NVIDIA Surround позволяет использовать три монитора одновременно как единое рабочее поле. Однако в реализации своей версии технологии полного погружения в виртуальный мир, калифорнийцы решили пойти ещё дальше и создали "технологический микс" из NVIDIA 3D Vision и NVIDIA Surround, который называется NVIDIA 3D Vision Surround. Суть этого "коктейля" в том, что можно одновременно использовать три монитора и очки 3D Vision для создания максимального эффекта присутствия. Но подробнее об этом мы расскажем в наших будущих материалах. Ну что же, пора познакомиться с новейшим ускорителем поближе, встречайте - NVIDIA GeForce GTX 480!

⇡ Внешний вид. Конструкция. Особенности

Ещё задолго до выхода GeForce GTX 480, на страницах различных интернет ресурсов появлялись фотографии видеокарт, похожих на GeForce GTX 480, однако лишь перед самым анонсом мы смогли увидеть настоящие фото нового флагмана NVIDIA. Итак, перед вами эталонный образец NVIDIA GeForce GTX 480. Пластиковый кожух выполнен в уже знакомом стиле, однако, в отличие от решений предыдущего поколения, у GTX 480 он закрывает лишь около половины лицевой поверхности видеокарты, а вторая занята металлическим радиатором с надписью GeForce. Из верхней части пластикового кожуха выступают четыре тепловые трубки (всего их пять), а ближе к панели выводов расположены вентиляцилнные щели для отвода части нагретого воздуха. Длина видеокарты GeForce GTX 480 составляет 27 см, в то время как длина Radeon HD 5870 примерно на 2 см больше за счёт выступающей за пределы печатной платы системы охлаждения. Для работы видеокарты GeForce GTX 480 требуется подключение двух разъемов питания PCI-Express. Один из них 6-контактный, другой - 8-контактный. На панели выводов GeForce GTX 480 расположены два разъёма DVI и один порт HDMI. Здесь же находятся вентиляционные отверстия для отвода горячего воздуха за пределы системного блока. Демонтируем систему охлаждения. Кулер GeForce GTX 480 крепится к печатной плате при помощи 13-ти винтов. Контакт радиатора с элементами подсистемы питания платы, а также с чипами видеопамяти, осуществляется через специальные термопрокладки. Графический чип контактирует с радиатором через тонкий слой термопасты. Металлическая пластина, с которой соприкасаются микросхемы памяти и элементы системы питания, крепится к кожуху системы охлаждения GeForce GTX 480 при помощи пластиковых защёлок. В “хвостовой” части пластины располагается турбина, нагнетающая поток воздуха, который проходит через ребра радиатора и выводится за пределы системного блока. Самый горячий элемент GeForce GTX 480 – графический процессор. Для его охлаждения используется радиатор с пятью тепловыми трубками, выполненный с применением технологии прямого контакта. Все пять трубок через тонкий слой термопасты соприкасаются с металлической крышкой, защищающей графическое ядро. Система питания GPU использует шесть фаз и основана на ШИМ контроллере CHL8266. К сожалению, на сайте производителя не удалось найти соответствующую документацию. В отличии от силовых элементов производства Volterra, которые собраны в одном корпусе, в подсистеме питания GeForce GTX 480 силовые элементы выполнены по дискретной схеме. На каждую фазу питания приходится по три транзистора (один в верхнем плече и два в нижнем). Такой подход позволяет лучше отводить тепло от элементов подсистемы питания. Система питания видеопамяти двухфазная. Маркировка ШИМ контроллера памяти uP6210AG .

Снимаем слой термопасты, и вот он - GPU NVIDIA GF100, закрытый защитной металлической крышкой, которая по совместительству выступает в качестве теплораспределителя. Судя по маркировке чипа (GF100-375-A3) массовое производство топовых ускорителей началось лишь с выходом третьей ревизии GPU на базе архитектуры Fermi.

Компания AMD уже очень давно устанавливает на свои графические карты видеопамять стандарта GDDR-5, в то время как основная масса решений NVIDIA работает с памятью GDDR-3. Новые ускорители GeForce GTX 470/480, наконец, тоже оснащаются памятью передового стандарта. На нашем экземпляре GeForce GTX 480 установлена видеопамять производства Samsung с маркировкой K4G10325FE-HC04 . Ее время выборки составляет 0,4 нс, а номинальная эффективная частота равна 5 ГГц QDR. Ну что же, внешний осмотр GeForce GTX 480 окончен, пора переходить к практическим испытаниям новинки.

Тестовый стенд

Тестирование всех видеокарт в данном обзоре проводилось на стенде следующей конфигурации:

Центральный процессор Intel Core i7 870 @ 4.0 ГГц (182x22)
Система охлаждения CPU Glacialtech F101 + 2x120 мм вентилятора
Материнская плата ASUS Maximus III Extreme
Оперативная память Super Talent DDR3 @ 1890
Жёсткий диск Samsung SpinPoint 750 ГБ
Блок питания IKONIK Vulcan 1200 Вт
Корпус Основа для стенда Cooler Master test bench 1.0
Операционная система Microsoft Windows 7 x64 Ultimate
Версии драйверов: Для видеокарт NVIDIA использовались драйверы ForceWare 197.17
Для видеокарт AMD использовались драйверы Catalyst 10.3a preview

В тестировании участвовали следующие видеокарты:

  • AMD Radeon HD 4890
  • AMD Radeon HD 5870
  • AMD Radeon HD 5970
  • NVIDIA GeForce GTX 260
  • NVIDIA GeForce GTX 285
  • NVIDIA GeForce GTX 295
  • NVIDIA GeForce GTX 480
Разумеется, главной целью данного обзора является знакомство с новым графическим ускорителем NVIDIA и оценка его потребительских качеств. Помимо этого, мы также попытаемся выяснить целесообразность перехода на новые видеокарты для владельцев решений предыдущего поколения. Именно поэтому в нашем обзоре помимо прямого конкурента GeForce GTX 480 – видеокарты AMD Radeon HD 5870, в тесте также принимают участие хиты продаж прошлых лет – Radeon HD 4890, GeForce GTX 260 и, конечно, топовые ускорители NVIDIA прошлого поколения.

Несколько слов о разгоне

В наших материалах для главного объекта тестирования мы обычно приводим как результаты, полученные на номинальных частотах, так и делаем замеры производительности после разгона. К сожалению, в этот раз тестов с повышенными относительно номинала частотами не будет, поскольку ни одна из существующих утилит не способна разогнать GeForce GTX 480. Ни NVIDIA System Tools, ни MSI Afterburner пока не могут повысить частоты этой видеокарты выше номинала. Более того, существующие публичные версии диагностических и оверклокерских утилит путаются в своих показаниях:

И только новая версия GPU-Z, которая на момент написания материала была недоступна для публичного скачивания, смогла правильно определить все характеристики нового ускорителя GeForce GTX 480.

Скриншот утилиты GPU-Z сделан на системе с двумя видеокартами GeForce GTX 480 в режиме SLI, работающих на номинальных частотах.

⇡ Тестовые приложения и режимы тестирования

Измерение температуры графического процессора NVIDIA GeForce GTX 480 и общего энергопотребления тестовой системы производилось в трёх режимах:

Игровое тестирование проводилось при следующих настройках:

Разрешение Варианты настроек качества картинки
3DMark Vantage Performance, High, Extreme
STALKER: Call of Pripyat. Сцена Sun Shafts 1680x1050, 1920x1200 DX10/10.1, Max. Detail, 4xAA/16xAF, Real Shadows, DX 11, Max. Detail, No Tessellation, 4xAA/16xAF, Real Shadows
Colin MCRae DiRT 2 1680x1050, 1920x1200 DX 9 Ultra Detail, 4xAA/16xAF; DX 11 Ultra Detail, 4xAA/16xAF
Unigine Heaven v 1.0 1680x1050, 1920x1200 DX10, High Detail, 4xAA/16xAF; DX11, High Detail, Tessellation off, 4xAA/16xAF
FarCry2 DirectX 10 Benchmark 1680x1050, 1920x1200 DX10, Very High preset, 4xAA/16xAF
Resident Evil 5 DirectX 10 Benchmark 1680x1050, 1920x1200 DX10, High Detail, 4xAA/16xAF
Crysis v 1.2 x64 1680x1050, 1920x1200 DX10, Very High, 4xAA/16xAF
В драйверах видеокарт NVIDIA технология PhysX была выключена Этот обзор NVIDIA GeForce GTX 480 является первым, но далеко не последним тестированием возможностей нового флагмана NVIDIA. В этот раз при выборе режимов тестирования мы остановились на проверке производительности новинки в “классических” режимах. Сравнение производительности с включенной тесселляцией, оценка скорости и качества более сложных алгоритмов сглаживания, а также изучение производительности SLI-связки новых флагманов – темы будущих обзоров. Итак, перейдем к цифрам.

⇡ Тестирование

Температурные режимы

Прежде всего, давайте выясним, как обстоят дела с температурой GPU NVIDIA GF100 в различных режимах работы, и сравним эти показатели с результатами остальных участников тестирования. Все тестовые видеокарты охлаждались эталонными СО. Исключением была лишь плата NVIDIA GeForce GTX 260, которая представлена видеокартой ASUS ENGTX260 Matrix .

Несмотря на то, что при работе с офисными приложениями частота графического процессора и видеопамяти GeForce GTX 480 значительно снижается, температура GF100 довольно высока, выше, чем у Radeon HD 4890. При этом шума от турбины GeForce GTX 480 не слышно даже на открытом стенде.

Температура GPU GeForce GTX 480 в игре FarCry2 “впечатляет”. Впервые в нашей лаборатории неразогнанный GPU одночиповой видеокарты прогревается в игре настолько сильно. В таком режиме скорость турбины возрастает, и её шум уже чётко выделяется на фоне остальных компонентов.

Максимальная нагрузка на ускоритель GeForce GTX 480 поднимает температуру GPU ещё выше - до 97 градусов Цельсия! Надо сказать, что сразу по достижении такого значения температуры, турбина начинает работать на максимальной скорости, в результате графический процессор довольно быстро охлаждается. В нашем случае температура снизилась до 91 градуса и не поднималась выше в течение всего теста, при этом скорость турбины не снижалась. Надо сказать, что полученный результат нас несколько обескуражил, поскольку новый одночиповый флагман NVIDIA обошёл по нагреву GPU даже видеокарту GeForce GTX 295 - двухчиповую топ-модель NVIDIA предыдущего поколения. Да, по документам, предоставленным самой NVIDIA, допустимыми являются значения температуры GPU GeForce GTX 480 вплоть до 105 градусов Цельсия. Однако внутри системного блока кроме видеокарты находятся и другие компоненты системы, которые также требуют удержания внутри компьютера безопасных значений температуры. Будущим владельцам GeForce GTX 480 мы настоятельно рекомендуем серьёзно отнестись к организации качественной вентиляции внутри корпуса. Как говорится, дыма без огня не бывает. Посмотрим, сколько электроэнергии потребляет тестовый стенд с разными видеокартами NVIDIA и AMD.

Без нагрузки система с установленным ускорителем GeForce GTX 480 потребляет примерно столько же электроэнергии, сколько та же система с видеокартой NVIDIA GeForce GTX 295. Прямой конкурент из лагеря AMD оказывается более экономичным решением. Когда на тестовом стенде установлена видеокарта AMD Radeon HD 5870, система потребляет примерно на 30-35 Вт меньше, чем с GeForce GTX 480.

Во время игры в FarCry2 и в режиме максимальной нагрузки, созданной при помощи теста FurMark 1.8.0, система с установленной видеокартой GeForce GTX 480 обошла всех остальных участников, в том числе и GeForce GTX 295. Разница в энергопотреблении системы с установленной видеокартой AMD Radeon HD 5870 и системы с NVIDIA GeForce GTX 480 составляет около 110-130 Вт, причём не в пользу детища калифорнийцев. Надо сказать, что тесты энергопотребления системы и нагрева GPU говорят не в пользу GeForce GTX 480. Однако люди, покупающие топовые решения, далеко не всегда смотрят на эти параметры. Флагманские решения в первую очередь должны быть максимально технологичны и, что самое главное, производительны. С поддержкой современных технологий у NVIDIA GeForce GTX 480 всё в полном порядке, а вот производительность мы сейчас оценим. Вначале посмотрим на показатели производительности в синтетических тестах:

Тестирование GeForce GTX 480 в 3DMark Vantage с профилем Performance демонстрирует прирост производительности относительно GeForce GTX 285 на уровне 25%. При этом мы зафиксировали отставание нового флагмана NVIDIA от основного конкурента в лице AMD Radeon HD 5870, разница в результатах составляет примерно 6%.

С ростом нагрузки видеокарта AMD Radeon HD 5870 начинает понемногу сдавать позиции. В режиме High отрыв от GeForce GTX 480 уже не так заметен, как в режиме Performance, а с переходом к профилю Extreme новый флагман NVIDIA вырывается вперёд, обгоняя ещё и GeForce GTX 295. При всём при этом, двухчиповый флагман AMD – Radeon HD 5970, вне конкуренции. Ещё один синтетический тестовый пакет, ставший популярным почти сразу после выхода – Unigine Heaven v 1.0.

Видеокарта NVIDIA GeForce GTX 480 обходит своего основного конкурента Radeon HD 5870. Перевес по очкам на стороне NVIDIA как в разрешении 1680x1050, так и 1920x1200. Расстановка сил внутри линейки NVIDIA такова: ускоритель GeForce GTX 480 по уровню производительности находится между GeForce GTX 295 и GeForce GTX 285, отставая от “295-ой” и опережая одночиповый топ предыдущего поколения примерно на 20%.

Тестирование в DirectX 11 без активации тесселляции показывает примерно те же результаты, что и тест в режиме DirectX 10. В обоих разрешениях по очкам выигрывает GeForce GTX 480. Вне конкуренции по-прежнему AMD Radeon HD 5970. Синтетические тесты позволяют представить лишь примерный уровень производительности видеокарты, поскольку почти всегда “синтетика” работает на движках, отличных от тех, что используются в реальных играх. Именно поэтому результатам таких тестов стоит доверять с осторожностью. Переходим к тестированию в реальных играх.

Глядя на результаты GeForce GTX 480, полученные в FarCry 2 DirectX 10 Benchmark, хочется воскликнуть “Вот этого мы и ждали!”. Новый флагман NVIDIA значительно оторвался от своего основного конкурента AMD Radeon HD 5870 и довольно близко подошёл к результатам Radeon HD 5970. Отрыв GeForce GTX 480 от Radeon HD 5870 как по минимальному, так и по среднему значению частоты смены кадров составляет порядка 25-30 fps. В сравнении с одночиповым флагманом предыдущего поколения GeForce GTX 285, новинка от NVIDIA оказалась быстрее почти вдвое! Что же до противостояния с NVIDIA GeForce GTX 295, то в FarCry 2 “старичку” также не поздоровилось, GeForce GTX 480 вырвался вперёд.

Пожилой, но от того не менее технологичный шутер Crysis v 1.2 x64 не выявляет явного лидера в схватке GeForce GTX 480 против AMD Radeon HD 5870. Эти ускорители идут фактически “ноздря в ноздрю”. А вот среди “братьев по оружию” GeForce GTX 480 вырывается вперёд. Особенно эта разница заметна в самом высоком разрешении. Надо сказать, что в этой схватке ускорители AMD Radeon HD 4890, GeForce GTX 260 и даже GeForce GTX 285 выглядят “бедными родственниками”, поскольку на фоне современных Hi-End решений они не могут показать адекватных результатов.

В игре Colin McRae DiRT 2 все решения NVIDIA показывают отличные результаты. Здесь AMD Radeon HD 5970 уже не является абсолютным лидером. В разрешении 1920x1200 видеокарта GeForce GTX 295 смогла слегка опередить старший ускоритель AMD, хотя разрыв составляет около 1-2 fps. Противостояние GeForce GTX 480 и AMD Radeon HD 5870 закончилось победой GeForce. Разница в производительности в разрешении 1680x1050 составляет около 20 fps как по среднему, так и по минимальному значению частоты смены кадров. С ростом разрешения AMD Radeon HD 5870 заметно сокращает разрыв, хотя новый флагман NVIDIA всё-таки впереди. Отставание GeForce GTX 285 от GeForce GTX 480 в DiRT 2 не так велико, как в ранее протестированных играх. Здесь флагман прошлого поколения демонстрирует хорошую производительность, достаточную для комфортной игры во всех разрешениях.

При переходе от DirectX 9 к DirectX 11 результаты всех протестированных нами ускорителей снизились. Тем не менее, даже при максимальном разрешении играть в Colin McRae DiRT 2 комфортно и на Radeon HD 5870, и на GeForce GTX 480. Последний, кстати, по прежнему лидирует, опережая своего основного конкурента Radeon HD 5870 как в разрешении 1680x1050, так и в разрешении 1920x1200. Чемпионом во всех разрешениях по-прежнему является Radeon HD 5970.

Пришло время демонстрации возможностей современных ускорителей в игре S.T.A.L.K.E.R.: Зов Припяти. Во-первых, хотелось бы отметить полное и безоговорочное лидерство топовых ускорителей AMD Radeon HD 5870 и AMD Radeon HD 5970. Разница в результатах между основными конкурентами AMD Radeon HD 5870 и NVIDIA GeForce GTX 480 фактически двукратная! Если честно, выглядит это очень странно. Ещё одна странность Сталкера, так это отношение движка игры к многочиповым тандемам. Обратите внимание на то, что GeForce GTX 295 по минимальному значению fps отстаёт от GeForce GTX 285, аналогично и Radeon HD 5970 отстаёт от Radeon HD 5870.

Если в разрешении 1680x1050 движок S.T.A.L.K.E.R. позволял комфортно играть на двух топовых ускорителях AMD, то повышение разрешения до 1920x1200 снизило минимальную и среднюю частоту смены кадров на Radeon HD 5870 до таких значений, при которых играть становится не очень комфортно. Ускоритель Radeon HD 5970 всё ещё держится на плаву, хотя просадки частоты смены кадров до 24 fps не приносят радости. Главный герой нашего обзора - GeForce GTX 480, при переходе к более высокому разрешению не потерял темп, а наоборот, прибавил, почти сравнявшись по минимальному значению fps с Radeon HD 5870.

Переход к DirectX 11 не сказался отрицательно на производительности участников тестирования. Ускоритель GeForce GTX 480 выступает практически наравне с Radeon HD 5870, незначительно отставая на символическую величину в 1 fps. В лидерах, как и прежде, AMD Radeon HD 5970.

Напоследок, проверим, на что способен GeForce GTX 480 в Resident Evil 5. Новинка от NVIDIA без труда опережает Radeon HD 5870, отрываясь от соперника на 15-20 fps в зависимости от разрешения. Показатели производительности GeForce GTX 480, в целом, оказываются даже лучше оных у GeForce GTX 295, не говоря уже о пожилом по меркам индустрии NVIDIA GeForce GTX 285.

⇡ Выводы

Подводя итоги, хотелось бы остановиться на нескольких моментах. Прежде всего, стоит отметить, что с точки зрения поддерживаемых технологий, паритет в Hi-End сегменте между видеокартами NVIDIA и AMD восстановлен. Более того, в некотором смысле небольшой технологический перевес теперь на стороне “зелёных”, поскольку все современные ускорители NVIDIA помимо DirectX 11, Direct Compute 5, OpenCL и др. поддерживают технологии PhysX и CUDA, используемые в ряде приложений, в том числе и компьютерных играх. Однако если смотреть шире, то компании NVIDIA необходимо проделать немалую работу, поскольку в остальных сегментах рынка у AMD доступна масса решений, превосходящих по технологичности аналоги NVIDIA. Нерешенным для Hi-End ускорителей NVIDIA остался вопрос энергопотребления и тепловыделения. Флагман линейки GeForce - видеокарта GeForce GTX 480, не только не может соперничать по показателям энергоэффективности с Radeon HD 5870, но проигрывает по этим показателям даже GeForce GTX 295! Если говорить о производительности, то, в целом, в базовых, если так можно выразиться, режимах ускоритель NVIDIA GeForce GTX 480 оказывается быстрее своего основного конкурента AMD Radeon HD 5870. Правда, глядя на скоростное преимущество GeForce GTX 480 в некоторых играх и режимах, хочется сказать, что мы ожидали большего превосходства. Тем не менее, окончательно ставить точку в вопросе производительности ещё рано. В скором времени появятся новые драйверы, которые поднимут производительность новинки от NVIDIA и решений от AMD. Кроме того, нам предстоит протестировать топовые ускорители обеих компаний в более тяжёлых графических режимах. Заранее предсказать итоги таких состязаний вряд ли возможно, всё будет зависеть от “запаса прочности” современных GPU. Именно в таких сражениях будет ясно, чья архитектура имеет больший задел на будущее.

Продолжительное время компания NVIDIA была лидером рынка графических ускорителей, всегда оставаясь первой в сфере инноваций и внедрения новых технологий. Но судьба нового поколения видеокарт оказалась не столь радужна, ведь уже полгода как на рынке доступны видеоадаптеры семейства Radeon с поддержкой нового DirectX 11, а соответствующие модели GeForce только появились. И дело тут не только в том, что калифорнийская компания проиграла AMD в гонке освоения нового 40-нм технологического процесса производства, но и в высокой планке, которую изначально поставили себе инженеры NVIDIA, принявшиеся за разработку качественно новой архитектуры Fermi, оптимизированной под будущие 3D-приложения. И насколько им это удалось, мы уже можем оценить на практике.

Архитектура GF100

Если последние решения AMD на базе Cypress являются развитием предыдущего поколения видеокарт, то NVIDIA подошла к процессу создания новой архитектуры более радикально, исходя из требований последнего API и его возможностей. Новый GPU получил название GF100. Аббревиатура GF указывает, что графический (Graphics) чип базируется на архитектуре Fermi.


Аналогично предшественникам на базе G80 и GT200 в основе нового GPU лежат несколько кластеров GPC (Graphics Processing Cluster), состоящих из группы потоковых мультипроцессоров (Streaming Multiprocessors). Полноценный чип включает четыре кластера по четыре мультипроцессора, каждый из которых в свою очередь содержит 32 CUDA-ядра. В итоге мы имеем 512 вычислительных блоков (CUDA cores). Но не случайно мы использовали слово «полноценный», ведь итоговый вариант GF100, на котором базируется топовый нынче графический ускоритель GeForce GTX 480, содержит лишь 480 активных CUDA-ядер, лишившись целого мультипроцессорного блока. А младшему GeForce GTX 470 достались уже 448 потоковых процессоров.


Кроме 32 CUDA-ядер мультипроцессор содержит блок целочисленных вычислений и блок для вычислений с плавающей запятой. Сложные операции выполняются блоками специальных фукций SFU (Special Function Units). Еще 16 блоков LD/ST служат для загрузки и хранения данных.


SM-блок имеет общую кэш-память первого уровня объемом 64 КБ и четыре текстурных блока. Всего в GF100 получается 64 текстурных модуля, но с учетом того, что вместо 16 мультипроцессоров у старшей карты осталось активных 15, то и число соответствующих блоков уменьшилось до 60. На фоне GT200 это немного, так как у предшественника их было 80. Но производительность новых текстурных блоков значительно возрасла. Согласно данным NVIDIA выборка текстур осуществляется чуть ли не в 1,5 раза быстрее чем у GT200.

Управляет потоками данных в GF100 специальный диспетчер GigaThread, распределяя потоки (варпы) по мультипроцессорам, внутри которых управление осуществляется соответствующими планировщиками Warp Scheduler и диспетчерами Instruction Dispatch. Каждый мультипроцессор имеет по два таких блока, благодаря чему может выполнять два варпа (32 потока) за такт.

Каждый мультипроцессор имеет 64 килобайт памяти, которая в зависимости от задач (графические или неграфические расчеты) может быть сконфигурирована в двух режимах: 48 КБ общей памяти и 16 КБ кэш-памяти первого уровня, или 16 КБ общей памяти и 48 КБ L1-кэша. Общая кэш-память второго уровня объемом 768 килобайт обеспечивает обмен данными между всеми блоками GPU. Унифицированная структура L2-кэша более гибкая, чем применявшаяся ранее «раздельная», и позволяет эффективнее использовать общий объем памяти в зависимости от потребностей конкретных задач и вычислительных блоков.


Кроме того, кластеры GPC дополнительно к четырем мультипроцессорным массивам имеют свои движки растеризации — Raster Engine, позволяющие параллельно с четырьмя специальными блоками PolyMorph Engine, отвечающими за тесселяцию и выборку вершин, поднять скорость обработки геометрии.


Претерпели изменения и блоки ROP, увеличена производительность при сглаживании методом мультисемплинга MSAA 8x. В качестве конкретных цифр приводится в пример игра H.A.W.X., в которой разница между режимом 4x MSAA и 8x MSAA на GeForce GTX 480 составляет не более 10%, в то время как на GeForce GTX 285 это около 50%. Также появился новый режим сглаживания 32x CSAA (Coverage Sampling Antialiasing), который обеспечивает сглаживание и полупрозрачных текстур, причем производительность при 32x CSAA почти не отличается от таковой в 8x MSAA.

Шина доступа к памяти, равная 384 битам, реализована за счет шести 64-битных контроллеров. У младшего GeForce GTX 470 отключен один контроллер. В качестве памяти используются чипы стандарта GDDR5. У старшей модели GeForce GTX 480 ее рабочая частота 3696 (QDR) МГц, у младшей — 3348 МГц. Топовый видеоадаптер оснащается объемом в 1536 МБ, а GeForce GTX 470 — 1280 МБ.

Видеоадаптер Radeon HD 5870 GeForce GTX 480 GeForce GTX 470 GeForce GTX 295 GeForce GTX 285 GeForce GTX 275
Ядро RV870 GF100 GF100 GT200b х 2 GT200b GT200b
Количество транзисторов, млн. шт 2154 3200 3200 1400 x 2 1400 1400
Техпроцесс, нм 40 40 40 55 55 55
Площадь ядра, кв. мм 334 530 530 487 x 2 487 487
Количество потоковых процессоров 1600 480 448 240 x 2 240 240
Количество текстурных блоков 80 60 56 80 x 2 80 80
Количество блоков рендеринга 32 48 40 28 x 2 32 28
Частота ядра, МГц 850 701 607 576 648 633
Частота шейдерного домена, МГц 850 1401 1215 1242 1476 1404
Шина памяти, бит 256 384 320 448 x 2 512 448
Тип памяти GDDR5 GDDR5 GDDR5 GDDR3 GDDR3 GDDR3
Частота памяти, МГц 4800 3696 3348 1998 2484 2268
Объём памяти, МБ 1024 1536 1280 896 x 2 1024 896
Поддерживаемая версия DirectX 11 11 11 10 10 10
Интерфейс PCIe 2.1 PCIe 2.0 PCIe 2.0 PCIe 2.0 PCIe 2.0 PCIe 2.0
Заявленная максимальная потребляемая мощность, Вт 188 250 215 289 183 219

Все более актуальными становятся в последнее время неграфические расчеты на GPU. Использование таких API, как CUDA и DirectCompute, расширяют функционал и возможности видеоадаптеров. Причем, подобного рода задачи становятся все более востребованными и для игровых приложений. Недавно вышедший проект Just Cause 2 использует для более реалистичной симуляции водной поверхности CUDA (что является эксклюзивным бонусом для владельцев видеокарт GeForce), в «Метро 2033 » для реалистичных эффектов постобработки под DirectX 11 используется DirectCompute. Мы уж не говорим о физическом движке NVIDIA PhysX, на базе которого реализуются реалистичная физика тканей, жидкости и дыма. Справедливости ради, надо отметить, что выдающихся проектов в числе использующих технологию PhysX немного, а тех, где подобные эффекты выглядят впечатляюще — еще меньше. Архитектура нового чипа изначально проектировалась под возможности выполнения неграфических расчетов с быстрым переключением задач. В частности, благодаря упоминавшемуся выше разделению общей памяти мультипроцессорных блоков под такие задачи выделяется 48 КБ в качестве кэша первого уровня.

Что же касается тех улучшений, которые несет игрокам DirectX 11, то GF100 готов к ним во всеоружии. Неслучайно большой акцент инженеры NVIDIA сделали на увеличении производительности при обработке геометрии. Одним из главных преимуществ нового API с точки зрения повышения конечного качества картинки является поддержка тесселяции. С помощью этого метода обработки увеличивается число полигонов на конечной модели. Фактически, таким способом модель просто сглаживается, избавляясь от «угловатости». Добиться более высокой детализации позволяет дополнительное наложение карт смещения (displacement maps). Использование этих двух методов позволяет работать с простыми начальными геометрическими моделями, а уже после применения тесселяции, т.е. разбиения на дополнительные треугольники, и смещения координат их вершин можно получить модель со сложной геометрией. Кстати, благодаря displacement maps возможно будет реализовать изменения геометрии объектов в режиме реального времени, например, получить настоящие дырки от пуль на поверхностях.


Именно с учетом всех этих новых возможностей DirectX 11 и проектировался GF100, что должно дать значительное преимущество над конкурентами в новых игровых проектах. В частности, NVIDIA говорит о восьмикратном преимуществе в специализированном тесте Microsoft subd11 tessellation test над Radeon HD 5870. В более приближенном к жизни Stone Giant Benchmark разница уже менее 90%, а в Unigine Heaven DX11 benchmark — это еще более скромные цифры. Результаты в синтетических тестах впечатляют, но в жизни все не так радужно, тем более, что проектов, где бы использовалась качественная тесселяция, пока не так уж и много.

Кроме традиционной растеризации Fermi предлагает использование метода трассировки лучей для построения изображения. На данный момент GF100 самый производительный чип, способный выполнять построение 3D-изображения с помощью алгоритмов трассировки лучей, поскольку его архитектура изначально оптимизировалась под такие возможности. Впрочем, производительности новых видеоадаптеров все равно не хватит для полноценного рендеринга в режиме реального времени. В NVIDIA это отлично понимают и предлагают комбинированный метод рендеринга с использованием стандартной растеризации и ray tracing. О какой-то практической реализации пока что говорить не приходится, и примеры такого подхода можно увидеть лишь на скриншотах, демонстрирующих работу такого метода с использованием специальной технологии NVIDIA OptiX.


Последние видеоадаптеры AMD могут выводить изображение сразу на три монитора, а специальные Eyefinity Edition-версии на шесть. Своеобразным ответом на это со стороны калифорнийской компании стала возможностей создания мультимониторной конфигурации (на базе трех дисплеев) для 3D-режима. Реализовать новую технологию 3D Vision Surround возможно лишь на SLI системе из двух или трех видеокарт новой серии. Учитывая рост системных требований при включении 3D-режима, такой подход вполне понятен — одна карта просто не в состоянии обеспечить нормальную производительность в современных играх на трех мониторах с разрешением до 1920х1080.


Подытоживая все вышесказанное, можно отметить, что чип GF100 получился прогрессивным и явно нацеленным на новые приложения под DirectX 11. NVIDIA привыкла быть лидером в разработке одночиповых видеоадаптеров, и новое поколение GeForce теоретически должно было повторить судьбу успешной серии GeForce 8800, но вышло совсем по-другому. Возникшие проблемы с реализацией в кремнии чрезвычайно сложного чипа, состоящего из более чем трех миллиардов транзисторов, привели к неслыханному доселе событию, когда в серийное производство пошла топовая видеокарта с отключенными вычислительными блоками. Изначальный вариант GF100 c 512 потоковыми процессорами так и не увидел свет. Собственно, это и не очень удивительно, если вспомнить, что у TSMC (производящей чипы для обоих графических гигантов) были некоторые проблемы и с более простым RV870 (2,15 млрд. транзисторов). Да и новый 40-нм техпроцесс у NVIDIA не задался даже в бюджетном сегменте. Не случайно же GeForce GT 220 и GeForce GT 240 обладали невысокими рабочими частотами на фоне предшественников, что вызывало некоторые опасения и в отношении будущих high-end видеокарт. При этом еще и сам выпуск новых моделей припозднился на полгода, когда AMD уже успела выпустить новые решения под DirectX 11 во всех ценовых сегментах. А огромный уровень энергопотребления и тепловыделения GeForce GTX 480 успел стать хорошей темой для шуток, что на самом деле не очень то и смешно, ведь потребление старшей карты достигает 250 Вт, в то время как ее основной конкурент Radeon HD 5870 ограничивается пиковым значением в 188 Вт. В такой ситуации основным преимуществом GeForce GTX 480 может стать высокий уровень производительности. И оправдает ли новый флагман NVIDIA возложенные на него надежды, мы как раз и постараемся выяснить в нашем тестировании.
Zotac GeForce GTX 480 (ZT-40101-10P)

Перейдем, наконец-то, к практическому изучению конкретного экземпляра GeForce GTX 480. В руки нам попала карта от компании Zotac, которая поставляется в довольно компактной упаковке с окошком на лицевой стороне, через которое частично видно сам видеоадаптер.


Поставляется данный экземпляр вместе со следующим набором аксессуаров:
  • переходник DVI/D-Sub;
  • переходник mini-HDMI/HDMI;
  • мостик SLI
  • диск с драйверами;
  • диск с дополнительным ПО;
  • инструкция по установке.
В качестве небольшого бонуса с картой идет диск с программами, использующими аппаратное ускорение с помощью технологии CUDA, в частности, утилиты для конвертирования и редактирования видеофайлов как Badaboom, vReveal и Super LoiLoScope. К сожалению, это 30-дневные trial-версии. Срок действия BitDefender Internet Security, который также включен в данный набор «ускоряемых» с помощью GPU программ, ограничен 90 днями.


Очень забавная наклейка с предупреждением о необходимости дать видеокарте остыть перед ее извлечением из системы находится внутри коробки. Похоже, тепловыделение GeForce GTX 480 действительно нешуточное, иначе бы обошлось без таких памяток пользователю.

Новый флагманский видеоадаптер по размерам вышел не больше старых моделей. Длина платы 27 см, что немного короче чем у Radeon HD 5870 . Если ранее старшие адаптеры NVIDIA были с двух сторон «облачены» радиаторами, то новая система охлаждения не предусматривает дополнительной пластины-радиатора с обратной стороны платы, да и микросхемы памяти на заднюю сторону платы уже не вынесены. Сам же кулер выполнен по типу турбины, бросаются в глаза четыре толстые тепловые трубки выглядывающие сбоку.




Видеокарта оснащена двумя выходами DVI и одним разъёмом HDMI с позолоченными контактами. В верхней части платы находятся шести- и восьмиконтактные гнезда для подключения дополнительного питания и два разъема MIO, позволяющие объединять видеокарты в режимах SLI или 3-Way SLI.


Система охлаждения состоит из большого радиатора графического чипа и пластины-радиатора для силовых элементов и микросхем памяти, к которой крепится радиальный вентилятор (довольно скромных размеров, кстати). Верхний кожух фиксируется на защелках и легко снимается.



В основе радиатора GPU пять толстых тепловых трубок диаметром 6 мм. Основание выполнено по технологии прямого контакта, т.е. сами трубки и являются основанием теплосъемника. Они приплюснуты и уложены подогнанные под их форму желобки. В избытке нанесен серый клейкий термоинтерфейс, что исключает возможность появления завоздушин.



Ребристая металлическая пластина, занимающая значительную часть внешней части конструкции, не относится к кожуху, а является частью системы охлаждения — к ней крепятся пластины радиатора. Соответственно, и нагрев ее будет довольно высокий, что лишний раз оправдывает памятку NVIDIA о необходимости быть осторожным перед извлечением видеокарты. Зато такой конструктивный элемент помогает увеличить общую площадь рассеивания.

Взглянем на плату, которая скрывается под системой охлаждения.


Схема питания ядра реализована по шестифазной схеме, памяти GDDR5 — по двухфазной.

Как и в предыдущих продуктах NVIDIA, кристалл закрыт теплораспределительной крышкой, чтобы предотвратить его повреждение и увеличить площадь контакта с теплосъемником системы охлаждения. На GeForce GTX 480 устанавливается чип с маркировкой GF100-375-A3.


Объем видеопамяти в 1,5 ГБ набран 12 микросхемами Samsung K4G10325FE-HC04. Эти GDDR5 чипы, согласно их спецификациям, рассчитаны на частоту в 5 ГГц, так что теоретически имеется еще довольно большой «запас» для разгона с учетом номинальной частоты памяти 3,7 ГГц у GeForce GTX 480. На деле все вышло совсем иначе, но об этом чуть ниже.


Рабочие частоты модели Zotac полностью соответствуют эталонным: ядро работает на 701 МГц, шейдерные блоки на 1401 МГц, а память GDDR5 на 3696 (924x4) МГц.


При отсутствии нагрузки частоты снижаются до 51/101/270 МГц (ядро/шейдерный домен/память) или до промежуточных значений. Регулируется и напряжение на GPU, поднимаясь до уровня 1,0 В только в 3D-приложениях.



Таким образом, достигается существенное снижение энергопотребления и тепловыделения чипа. И хотя пользователя уже не раз стращали пугающими цифрами температур и уровнем шума, но в 2D-режиме все не так плохо. Температура чипа держится в пределах 50 °С при довольно невысоком уровне шума. Но все резко меняется, как только запускается мощное 3D-приложение.

После 12-минутного прогона стресс-теста Fur Rendering Benchmark в разрешении 1680х1050 графический чип достиг температуры 96 °С, а вентилятор системы охлаждения в автоматическом режиме управления раскрутился до 92% от своего максимума (это чуть менее 4000 об/мин), создавая нестерпимый гул.


Ну а как же дело обстоит в реальных играх? После пятикратного прогона демки Ambush из Crysis Warhead Benchmarking Tool в разрешении 1920х1200 при максимальных настройках качества со сглаживанием AA4x чип достиг температуры в 92 °С. Но, что более важно, обороты вентилятора не превысили уже 75%. Нельзя сказать, что и такой режим комфортен для слуха, но вполне терпим, и, чисто субъективно, не намного больше чем у Radeon HD 5870 в автоматическом режиме управления кулером.


Температуры довольно высокие, но NVIDIA уже не раз рапортовала, что плата спроектирована из расчета на работу в таких высоких температурных режимах и что все компоненты рассчитаны на подобные условия. И если за долговечность видеокарты (по крайней мере в течение гарантийного срока) пользователь может не волноваться, то вопрос охлаждения других компонентов внутри системного блока встает очень остро. И хотя 90 °С на ядре для нас не новинка, старые продукты и конкуренты легко достигают таких значений в стресс-тестах, но с ролью «обогревателя» именно новый видеоадаптер справляется на ура, выделяя тепла больше всех. Карта отлично прогревает воздух внутри корпуса, а после нескольких часов интенсивной работы в помещении появляется и специфичный запах. Данный продукт явно не для тех, кто озабочен вопросами глобального потепления. И тем, кто нацелен на покупку данного продукта, мы бы рекомендовали присмотреться к корпусам с большим вентилятором на боковой стенке, например к Cooler Master HAF 932. Вот только от шума родной СО видеокарты это вас все равно не избавит… Честно говоря, лучше бы сделали плату на пару сантиметров больше, чтобы на эти же пару сантиметров увеличить сам радиатор.

И немного слов о разгоне. Для данной цели можно использовать последнюю версию утилиты MSI Afterburner, которая позволяет даже управлять напряжением на ядре, но с учетом его тепловыделения о вольтмоде с воздушным охлаждением и думать не стоит. Кстати, в новых видеокартах основной является теперь частота шейдерного домена, а остальные блоки работают на пониженном множителе относительно частоты шейдеров. Так что для управления доступна частота шейдерных блоков, равная в номинале 1401 МГц, а значение в 701 МГц для ядра повышается соответственно изменению первого параметра без возможности раздельной регулировки. Говоря о частотных особенностях надо упомянуть, что мультипроцессорные блоки в GPU не полностью работают на частоте «шейдерного домена», PolyMorph Engine вместе с Raster Engine функционируют на вдвое меньшей частоте.


Установив максимальные обороты турбины, мы достигли частот ядра в 775/1550 МГц. Относительно номинала это почти +11%. При дальнейшем повышении частот, родной системы охлаждения катастрофически не хватало, но потенциал у GF100 еще был. Хотя и наши частоты оказались полностью стабильными лишь первые шесть часов. После того, как пару раз зависло одно приложение, мы дали карте время немного остыть, и без проблем закончили все тесты. Как видим, именно охлаждение является сдерживающим фактором в деле раскрытия потенциала такого огнедышащего монстра, как GF100. Разгон памяти оказался на удивление низким, не смотря на ее номинал. Все чего удалось достичь — 3800 МГц (950 МГц), более высокие значения приводили к крайней нестабильности.

При таком разгоне сохранялась полная стабильность в Fur Rendering Benchmark (до момента возникновения описанных выше проблем спустя шесть часов интенсивной работы).


За 12-минут такого стресс-теста ядро прогрелось до 99 °С при максимальных оборотах вентилятора системы охлаждения. В реальных игровых приложениях, температура была заметно ниже и не достигала и 90 °С.

В качестве конкурента для рассматриваемого GeForce GTX 480 мы взяли самую мощную одночиповую видеокарту компании AMD — Radeon HD 5870. Модель от Gigabyte является полной копией референса, поэтому подробно останавливаться на ней мы не будем, тем более что данный продукт в деталях был рассмотрен ранее на страницах нашего сайта.


Комплект поставки включает:
  • переходник DVI/D-Sub;
  • два переходника питания molex-PCI-E;
  • мостик CrossFire;
  • диск с драйверами;
  • инструкции по установке.



Рабочие частота стандартны — 850/4800 МГц для ядра и памяти. В 2D частоты снижаются до 157/1200 МГц.


В стресс-тесте Fur Rendering Benchmark ядро прогрелось до 87 °С. Обороты вентилятора достигли 40%, но, несмотря на низкое значение, это уже означает довольно высокий уровень шума. Турбины у видеокарт AMD громче аналогичных систем охлаждения у NVIDIA, просто они никогда не работают на максимальных значениях, поэтому и оказываются на деле тише.


После прогона пятикратного теста Ambush из Crysis Warhead Benchmarking Tool в разрешении 1920х1200 температура не поднялась выше 79 °С.


С помощью утилиты MSI Afterburner ядро удалось разогнать до стабильных 960 МГц при поднятии напряжения с номинальных 1,15 В до 1,3 В. Память GDDR5 заработала на 5452 МГц (1363 МГц), что тоже отличный результат. С учетом вольтмода для стабильной работы пришлось зафиксировать обороты кулера на максимуме.


Рев турбины при этом нестерпимый, и в повседневной жизни такой разгон можно будет использовать лишь при более мощной системе охлаждения, но и в случае с GeForce GTX 480 мы тоже говорим о возможности использования разгона только с более мощным охлаждением. Зато мы получаем возможность сравнить потенциал обеих видеокарт при повышенных частотах.Тестовый стенд

Конфигурация тестового стенда следующая:

  • процессор: Core 2 Quad Q9550 (2,83@3,95 ГГц, 465 МГц FSB);
  • кулер: Thermalright Ultra-120 eXtreme;
  • материнская плата: ASUS Rampage Formula (Intel X48 Express);
  • память: OCZ OCZ2FXE12004GK (2x2GB, DDR2-1200@1162 МГц при таймингах 5-5-5-15);
  • звуковая карта: Creative Audigy 4 (SB0610);
  • жесткий диск: WD3200AAKS (320 ГБ, SATA II);
  • блок питания: Seasonic SS-850HT (850 Вт);
  • операционная система: Windows 7 Ultimate x64;
  • драйверы видеокарт: ATI Catalyst 10.3, NVIDIA ForceWare 197.41.
В операционной системе были отключены User Account Control и Superfetch, а также визуальные эффекты интерфейса. Файл подкачки фиксировался на 1 ГБ. Настройки драйверов видеокарт не изменялись.

В игровых приложениях тестирование проводилось в разрешениях 1680x1050 и 1920x1200 при максимальных настройках качества. Дополнительные тесты при активации сглаживания проводились только в тех приложениях, которые изначально его поддерживают, без принудительного форсирования через драйверы. Методика тестирования описана в одной из прошлых статей. Дублировать мы ее не будем, отметим лишь, что в число прогонов встроенного теста производительности в Colin McRae: DiRT 2 увеличено до 4 раз во всех режимах. Добавлена игра Метро 2033 , нюансы тестирования в ней описаны непосредственно перед результатами.


По среднему fps новичок GTX 480 немного уступает Radeon HD 5870, удерживая позицию лидера по минимальному fps. Впрочем, разница между обоими соперниками минимальна.




В более тяжелых режимах и высоких разрешениях GeForce GTX 480 немного сдает позиции, и отставание от конкурента достигает 7% в 1920х1200. Довольно неплохо масштабируется производительность GF100 даже несмотря на крошечный разгон памяти. Прирост от разгона достигает почти 11 % — столько же, насколько увеличена частота ядра.

The Chronicles of Riddick: Assault on Dark Athena



Снова в номинальных режимах ситуация неоднозначна. Radeon HD 5870 демонстрирует более высокий средний fps, но минимальный показатель лучше у GeForce GTX 480. С разгоном карта AMD уже обходит соперника по обоим параметрам, что с учетом большего разгонного потенциала вполне ожидаемо.

Call of Juarez: Bound in Blood



В обоих разрешениях результаты почти не отличаются. В данном случае производительность уперлась в процессор, что и стало причиной таких однообразных графиков. Но все равно заметно явное преимущество Radeon над соперником — минимальный fps выше почти на 6%.

Batman: Arkham Asylum


Для начала рассмотрим результаты тестирования в этом приложении без использования NVIDIA PhysX.



Минимальная частота кадров во всех режимах равна примерно 90 кадрам в секунду, в данном случае, возможно, снова производительность «уперлась» в вычислительные возможности процессора. По среднеигровому показателю лидером является GeForce GTX 480. Больший разгонный потенциал помогает Radeon HD 5870 выйти на первое место с разгоном.



При активации физического движка система с видеокартами Radeon демонстрирует очень низкую производительность и мощность самого видеоадаптера тут уже ничего не решает, fps зависит больше от CPU. GeForce GTX 480 демонстрирует высокую частоту кадров, достаточную для комфортной игры даже в самом высоком разрешении. Конечно, в таком режиме более актуально было бы сравнить новичка с предшественниками на базе GT200, и подобное сравнение на нашем сайте еще будет, но в будущих материалах.

Call of Duty: Modern Warfare 2





Вот наконец-то первое приложение, где преимущество GeForce GTX 480 над конкурентом весьма очевидное и без использования каких-либо PhysX. В простом режиме разница между видеоадаптерами небольшая и отставание карты AMD порядка 5%. Но стоит включить сглаживание, как производительность Radeon HD 5870 значительно падает, особенно снижается минимальный fps, и по этому параметру новичок обходит соперника на внушительные 40-45%.

Borderlands


Прежде чем переходить к результатам, отметим, что в родном тесте производительности Borderlands у всех карт GeForce имеется довольно большой разброс по минимальной частоте кадров, которая может колебаться от 25 до 32 кадров во всех 7 прогонах. Среднее значение составляет около 29 fps на всех моделях, начиная от GeForce GTX 260. У Radeon результаты тоже разнятся, но диапазон этого «разброса» значительно меньше, что дает среднее значение выше — 31 кадр. Но с учетом такой особенности этого теста, когда минимальный fps остается неизменным и не зависит от потенциала видеокарты, не стоит обращать большое внимание на данный параметр, хотя мы его и приводим. Довольно точное впечатление об уровне производительности в этой игре дает именно средний показатель.



Игра предпочитает GeForce, в чем мы уже имели возможность убедиться в тестировании видеокарт серии Radeon HD 5700 , так что преимущество GeForce GTX 480 не является неожиданностью. Отметим минимальное изменение средней частоты кадров по достижении рубежа в 80 fps. Прирост от разгона в разрешении 1680х1050 для GeForce менее 1%, в то время как в 1920х1200 мы выигрываем от повышения частот уже 3% (что тоже немного). Да и для Radeon прирост от повышения частот тоже небольшой. В этом приложении вновь общая производительность явно сдерживается потенциалом нашего процессора.

Divinity 2: Ego Draconis (Кровь драконов)



Очень внушительное преимущество GeForce GTX 480 над соперником — 10% по среднему fps и более 20% по минимальному показателю. И снова память не сильно сдерживает потенциал новичка при разгоне. Несмотря на крошечное изменение частоты GDDR5 на 2,7% (при разгоне GPU на 10,6 %), выигрыш в производительности от разгона составляет 9%.






На поле боя 3DMark Vantage новый GeForce GTX 480 терпит поражение в низком разрешении, а 1680х1050 уже не уступает Radeon HD 5870. Разгон помогает карте AMD быть лидером во всех режимах.



Игра известна совей процессорозависимостью, и даже в разрешении 1680х1050 на таких мощных видеокартах «ограничителем» вновь стал CPU, хотя в номинальном режиме небольшое отставание Radeon от новичка все же заметно.

При включении сглаживания разница между видеоадаптерами становится более явной, достигая 17% по среднему показателю. И Radeon HD 5870 не может догнать соперника даже с разгоном.


В самом высоком разрешении разница между тестируемыми видеоадаптерами еще больше. При включении AA4x преимущество GeForce GTX 480 достигает 19% и по минимальному и по среднему fps. Компенсировать такой разрыв сопернику AMD разгон не помогает.

Far Cry 2





Еще одна уверенная победа GeForce GTX 480. Преимущество над соперником в обоих разрешениях без сглаживания равно 10-13%, а при включении AA4x достигает уже внушительных 30% по среднему показателю и 60% по минимальному. Повышение частот Radeon HD 5870 до 960/5452 МГц помогает достичь уровня новичка на номинальных частотах только лишь в простых режимах, компенсировать огромнейшее отставание при активном сглаживании никакой разгон не поможет.

Tom Clancy"s H.A.W.X.






В этой игре обычно имеет место небольшое преимущество решений AMD, и наше тестирование это в очередной раз подтверждает. Но отставание GeForce GTX 480 от соперника минимально, а в разрешении 1920х1200 со сглаживанием лидерство внезапно оказывается на стороне модели NVIDIA.

Resident Evil 5





GeForce GTX 480 удерживает позиции лидера в номинале и в разгоне. Преимущество над соперником от 2 до 6% в простом режиме и от 11 до 13% при включении мультисемплинга.

James Cameron"s Avatar: The Game





Чуть большую производительность демонстрирует GeForce GTX 480. Но Radeon HD 5870 отстает от соперника на 3-4%. С разгоном обе карты демонстрируют примерно идентичные результаты, по минимальному fps совсем крошечное преимущество остается за представителем AMD.

Battlefield: Bad Company 2



В простом режиме при настройках High (Gamer) у новой карты NVIDIA преимущество в 10% над Radeon HD 5870.





С повышением настроек разница между картами уменьшается, но лидерство GeForce GTX 480 сохраняет. Наиболее значимым становится отставание конкурента при включении сглаживания — в таких случаях разница в минимальном fps может достигать 15%. Впрочем, Radeon HD 5870 компенсирует это лучшим разгоном, и в простых режимах даже умудряется немного обогнать разогнанный представитель Fermi.

В DirectX 11 преимущество GeForce GTX 480 становится еще больше. Отрыв от конкурента в номинальных режимах составляет около 11 % по минимальному fps и до 16% по среднему показателю. С разгоном Radeon HD 5870 удается достичь показателей конкурента по минимальному fps, но не по среднему показателю.

Metro 2033


Тестирование проводилось на локации «Аллея». Специально был выбран надземный уровень, поскольку именно на открытых пространствах fps ниже чем в туннелях и закрытых помещениях. Выбранный эпизод примечателен и тем, что можно обойтись без масштабных перестрелок и выполнить одну и ту же последовательность действий при каждом прогоне. Совершалась короткая 40 секундная прогулка по определенному маршруту. Для каждого режима тест повторялся по три раза. К сожалению, из-за дефицита времени мы успели протестировать GeForce GTX 480 только лишь под DirectX 11, но именно этот режим наиболее актуален для видеоадаптеров нового поколения. В последующих материалах (и по GeForce GTX 470 в том числе) будут присутствовать результаты в DirectX 10.





Преимущество GeForce GTX 480 над Radeon HD 5870 в простых режимах на уровне 13-15% по среднему fps, но разница по минимальному не более 4%. При включении сглаживания отставание карты AMD составялет 30-38% (возможно, и за счет большего объема видеопамяти у GeForce). Но обеспечить приемлемую производительность в таком режиме новичок NVIDIA все равно не в состоянии, так что практической пользы от такого огромного преимущества мало. И даже в разрешении 1680х1050 на Fermi минимальный fps не удовлетворительный, хотя на самом деле общая производительность близка именно к среднему показателю, а на закрытых локациях (которых в игре значительно больше) она еще выше, так что получить удовольствие от игры в DirectX 11 можно и в таком разрешении. Самым требовательным пользователям придется довольствоваться более низкими разрешениями даже с видеокартой GeForce GTX 480.

Выводы

Итак, что же получается по итогам нашего тестирования? Ситуация не совсем однозначная и не всегда GeForce GTX 480 оказывается производительнее Radeon HD 5870. В подавляющей части приложений новый видеоадаптер NVIDIA все же обходит своего конкурента, но зачастую разница между ними бывает совсем минимальной (Batman: Arkham Asylum, Avatar), и конкурент легко компенсирует это разгоном. В некоторых случаях новичок проигрывает по средней частоте кадров, но демонстрирует лучший минимальный fps (The Chronicles of Riddick: Assault on Dark Athena). Но есть и приложения, где верх уверенно берет Radeon HD 5870. Наиболее существенное отставание GeForce GTX 480 в недавно выпущенной игре Battlefield: Bad Company 2 и в S.T.A.L.K.E.R.: Call of Pripyat (под DirectX 10.1). Однако в том же Battlefield сразу проявляется и одна из положительных особенностей GeForce GTX 480, который сводит преимущество Radeon к нулю в высоком разрешении со сглаживанием. Именно в таких режимах мы видим максимальное преимущество новинки над конкурентом (исключение составляет лишь Battlestations: Pacific). С учетом того, что мощности рассматриваемого видеоадаптера для Battlefield: Bad Company 2 и многих других игр вполне хватает для подобных режимов, данное преимущество будет очень актуальным для владельцев больших мониторов.

В ряде приложений GeForce GTX 480 вообще демонстрирует уровень производительности недостижимый для своего основного конкурента, даже с разгоном (Divinity 2, Borderlands, World in Conflict, Far Cry 2). Особенно веским является превосходство в последних приложениях, поддерживающих DirectX 11. Яркий тому пример — ситуация в S.T.A.L.K.E.R.: Call of Pripyat, когда в DirectX 10.1 карта NVIDIA уступает конкуренту, но уже в DirectX 11 показывает более высокий минимальный fps и становится безоговорочным лидером при включении сглаживания. Не сдает лидерских позиций данный видеоадаптер также в Colin McRae: DiRT 2 и «Метро 2033».

GeForce GTX 480 может смело называться самым производительным одночиповым видеоадаптером. Прогрессивная архитектура Fermi действительно имеет преимущества относительно решений AMD, и, возможно, в будущем по мере выхода новых игр, использующих тесселяцию, превосходство флагмана NVIDIA станет еще большим. Но позволит ли все это стать данной видеокарте популярной? Сомнительно, уж сильно припозднился GeForce GTX 480. Fermi, возможно, и является более прогрессивным вариантом, но на данный момент никакой революции в производительности новый графический ускоритель пока не совершил. Пользователи, приобретшие в свое время Radeon HD 5870, могут спать спокойно — в большинстве случаев хороший разгон помогает компенсировать отставание от флагмана NVIDIA. При этом тепловыделение, уровень шума и цена топовой одночиповой модели AMD ниже, благодаря чему она не теряет своей актуальности и поныне.

К сожалению, новый чип NVIDIA вышел не только прогрессивным, но и очень сложным для конечной реализации. Как следствие, по пути от стадии разработки до воплощения в кремнии, GF100 был «облегчен» на 32 CUDA ядра, и даже это не помогло достичь нормального теплового режима конечного продукта. High-end продукты — это всегда удел энтузиастов, но и в их глазах GeForce GTX 480 из-за своего горячего нрава немного теряет привлекательность. Вряд ли кто-то будет мириться с такими высоким температурами внутри системного блока и шумом родной СО. Альтернативных кулеров для этой модели (в отличие от Radeon HD 5870) пока еще нет, да и появление воздушных систем охлаждения, способных поддерживать низкую температуру GF100, под вопросом. Потенциальному покупателю GeForce GTX 480 стоит задуматься о СВО, потому как это единственный на данный момент вариант, который позволит не только поддерживать низкую температуру чипа и компонентов платы, но и раскрыть весь потенциал видеокарты с помощью разгона. А он, потенциал, у нее имеется и весьма неплохой. Мы в этом отлично убедились на примере нашего экземпляра Zotac, который показал хороший прирост от повышения частоты GPU, даже несмотря на почти что полное отсутствие разгона памяти. Кстати, неприятная ситуация с низким разгоном GDDR5 оказалось характерной и для видеоадаптера Zotac GeForce GTX 470, которому будет посвящена следующая наша статья. Будем надеяться, что это всего лишь следствие «сырого» BIOS, а не каких-то конструктивных особенностей моделей данного производителя или всей линейки GeForce на базе GF100.

  • Zotac — видеокарта Zotac GeForce GTX 480.
  • Недавно, после долгих подготовок и многочисленных обещаний, компания NVidia все-таки выпустила на массовый рынок новые видеоадаптеры: GeForce GTX 480 и GeForce GTX 470. Мы уже успели познакомиться с каждой из новинок в нашем первом обзоре . Это обозначает, что сегодня на повестке дня не стоит задача предельно внимательно изучить их, мы всего лишь кратко вспомним основные параметры. «Так что же будет в этой статье?», - спросите Вы, наши дорогие читатели. А в этой статье мы будем «делать разгон» . Да, автор решил исправить ту ситуацию, из-за которой было так много шума.

    GTX 480 изнутри и снаружи (кратко)

    реклама

    Как я и обещал, подробного изучения строения и архитектуры видеоадаптера не будет, мы лишь напомним ключевые моменты тем, кто невнимательно читал наш первый обзор или хочет освежить в памяти характеристики. Начнем с внешнего обзора карты.

    Перед нами все тот же видеоадаптер от компании ZOTAC, что был и в первом обзоре. На самом деле, от компании ZOTAC здесь только наклейка, а видеокарта представляет собой образец эталонного дизайна, без каких-либо изменений. Размеры видеоадаптера составляют 27 см в длину и 12 см в глубину. Принт ZOTAC разделяет собой две части системы охлаждения. Справа от него находится турбина с возможностью программной регулировки оборотов. Слева мы видим верхнюю часть алюминиевого радиатора и четыре теплотрубки. На самом деле трубок пять, просто одна спряталась под кожухом видеокарты . Задняя часть платы ничем особенным не выделяется. Единственная микросхема, представляющая для нас интерес, это микросхема с маркировкой CHL8266, отвечающая за управление питанием видеоадаптера. Воспользовавшись возможностями этой микросхемы, мы можем вручную регулировать подаваемое на графический процессор напряжение с помощью специализированных утилит.

    NVIDIA GeForce GTX 480M - топовая видеокарта, построенная на архитектуре Fermi. Она имеет полную поддержку DirectX 11 и производится по 40 нм технологии от TSMC. Имея 352 ядра, GTX480M можно сравнить с GTX 465 для настольных компьютеров, но с более низкой частотой. GeForce GTX 480M располагает 2 GB быстрой видеопамяти GDDR5 (дискретной), поэтому ее производительность должна находиться на уровне карты ATI Mobility Radeon HD 5870 .

    Также известный под именем GF100 чип Fermi был преобразован и теперь имеет 3 миллиард транзисторов (со всеми 512 шейдерами). По сравнению с HD 5870 для настольных компьютеров, которая имеет 2.13 миллиардов транзисторов или Mobility Radeon HD 5870 (RV870) с 1.04 миллиардами транзисторов, GTX480M выглядит весьма впечатляюще.

    Мобильный чип Fermi содержит до 352 шейдерных ядер (1-мерных) с 32 блоками растеризации (ROP) и 44 текстурными единицами (Texture Unit). Шина памяти - 256-битная, но из-за быстрой памяти GDDR5, она не должна быть проблемным местом. Силовое потребление составляет 100 Вт TDP, включая плату MXM и 2 GB GDDR5. AMD обычно определяет энергопотребление чипа отдельно, поэтому их нельзя непосредственно сравнивать. GTX 480M подходит только для большого ноутбука с хорошей системой охлаждения. Вначале только компания Clevo решилась установить эту карту в свои barebone-комплекты - 17" D901F и 18" X8100.

    Производительность Nvidia GeForce GTX 480M должна быть лучше, чем у ATI Mobility Radeon HD 5870 , и на уровне с мобильной системой Geforce GTX 285M SLI и Radeon HD 4770 для настольных компьютеров. Это значит, что GTX480M - самая быстрая одиночная видеокарта в первом квартале 2010 года. Современные DirectX 10 игры должны работать на высоком разрешении бегло с хорошей прорисовкой и сглаживанием. Только для очень требовательных игр, подобных Crysis Warhead, возможно, нужно немного снизить детализацию. Из-за аппаратных средств поддержки DirectX 11 (например, хорошей тесселяции), видеокарты, построенные на архитектуре Fermi должны хорошо себя чувствовать в DirectX 11 играх, которых будет появляться все больше и больше.

    Также как и серия видеокарт GeForce 300M, GeForce GTX 480M поддерживает PureVideo HD с видеопроцессором VP4. Это значит, что видеокарта может полностью декодировать HD видео в H.254, VC-1, MPEG-2 и MPEG-4 ASP. Используя Flash 10.1, графическая карта может также ускорить обработку Flash видео. Ядра Nvidia GeForce GTX 480M могут использоваться для общих вычислений, используя CUDA или DirectCompute. Например, кодирование видео HD может выполняться значительно быстрее, используя шейдерные ядра графического процессора, нежели это будет делать современный центральный процессор. PhysX, также поддерживаемый мобильным Fermi, позволяет вычислять физические эффекты в соответствующих играх (падение капель дождя, рассеивание тумана и т.д.).

    По сравнению с видеокартами для настольных компьютеров, Geforce GTX 480M можно прировнять к разогнанной карте Nvidia GeForce GTX 465 (частота 607/1200) и Radeon HD 5770 .



    Понравилась статья? Поделиться с друзьями:
    Производитель: NVIDIA
    Серия: GeForce GTX 400M
    Код: Fermi
    Потоки: 352 - unified
    Тактовая частота: 425* МГц
    Частота шейдеров: 850* МГц
    Частота памяти: 1200* МГц
    Разрядность шины памяти: 256 Бит
    Тип памяти: GDDR5
    Максимум памяти: 2048 Мб
    Общая память: нет
    DirectX: DirectX 11, Shader 5.0
    Энергопотребление: 100 Вт
    Транзисторов: 3000 млн
    Технология: 40 нм
    Размер ноутбука: большой
    Дата выхода: 25.05.2010