Case технологии в проектировании баз данных. Case средства - Методологии и технологии проектирования ИС

Для автоматизации процессов проектирования и разработки информационных систем в 70–80-е года широко применялась структурная методология, означающая использование формализованных методов описания разрабатываемой системы и принимаемых технических решений. При этом использовались графические средства описания различных моделей информационных систем с помощью схем и диаграмм. Это явилось одной из причин появления программно-технологических средств, получивших название CASE-средств и реализующих их CASE-технологий создания и сопровождения информационных систем.

Термин CASE (Computer Aided Software/System Engineering) используется в весьма широком смысле. Первоначальное значение термина CASE ограничивалось лишь вопросами автоматизации разработки программного обеспечения. В настоящее время этот термин получил более широкий смысл, означающий автоматизацию разработки информационных систем .

CASE-средства представляют собой программные средства, поддерживающие процессы создания и/или сопровождения информационных систем, такие как: анализ и формулировка требований, проектирование баз данных и приложений, генерация кода, тестирование, обеспечение качества, управление конфигурацией и проектом.

CASE-систему можно определить как набор CASE-средств, имеющих определенное функциональное предназначение и выполненных в рамках единого программного продукта.

CASE-технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных систем и поддерживается комплексом взаимосвязанных средств автоматизации.

CASE-индустрия объединяет сотни фирм и компаний различной направленности деятельности. Практически все серьезные зарубежные программные проекты осуществляются с использованием CASE-средств, а общее число распространяемых пакетов превышает 500 наименований.

Основная цель CASE-систем и средств состоит в том, чтобы отделить проектирование программного обеспечения от его кодирования и последующих этапов разработки (тестирование, документирование и пр.), а также автоматизировать весь процесс создания программных систем, или инжиниринг (от англ. engineering – разработка).

Современные CASE-средства поддерживают разнообразные технологии проектирования информационных систем: от простых средств анализа и документирования до полномасштабных средств автоматизации, охватывающих весь жизненный цикл программного обеспечения.

Наиболее трудоемкими этапами разработки ИС являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают качество принимаемых технических решений и подготовку проектной документации. При этом важную роль играют методы визуального представления информации. Это предполагает построение структурных или иных диаграмм в реальном масштабе времени, использование многообразной цветовой палитры, сквозную проверку синтаксических правил. Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую информационную систему, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

САSЕ-средства составляют основу проекта любой ИС. Методология реализуется через конкретные технологии и поддерживающие их стандарты, методики и инструментальные средства, которые обеспечивают выполнение процессов жизненного цикла информационных систем.

Характерные особенности CASE-средств:

- Единый графический язык . CASE-технологии обеспечивают всех участников проекта, включая заказчиков, единым строгим, наглядным и интуитивно понятным графическим языком, позволяющим получать обозримые компоненты с простой и ясной структурой. При этом программы представляются двумерными схемами (более простыми в использовании, чем многостраничные описания), позволяющими заказчику участвовать в процессе разработки, а разработчикам общаться с экспертами предметной области, разделять деятельность системных аналитиков, проектировщиков и программистов, облегчая им защиту проекта перед руководством, а также обеспечивая простоту сопровождения и внесения изменений в систему.

- Единая база данных проекта . Основа CASE-технологии – использование базы данных проекта (репозитария) для хранения всей информации о проекте, которая может совместно использоваться разработчиками в соответствии с их правами доступа. Содержимое репозитария включает не только информационные объекты различных типов, но и отношения между их компонентами, а также правила применения или обработки этих компонентов. Репозитарий может хранить объекты различных типов: структурные диаграммы, определения экранов и меню, проекты отчетов, описания данных и логики их обработки, а также модели данных, организации и обработки, исходные коды, элементы данных и т.п.

- интеграция средств . На основе репозитария осуществляются интеграция СASE-средств и разделение системной информации между разработчиками. При этом возможности репозитария обеспечивают несколько уровней интеграции: общий пользовательский интерфейс по всем средствам, передачу данных между средствами, интеграцию этапов разработки через единую систему представления фаз жизненного цикла, передачу данных и средств между различными платформами.

- Поддержка коллективной разработки и управления проектом . CASE-технология поддерживает групповую разработку проекта, обеспечивая возможность работы в сети, экспорт-импорт любых фрагментов проекта для их развития и/или модификации, а также планирование, контроль, руководство и взаимодействие, то есть функции, необходимые в процессе разработки и сопровождения проектов. Эти функции также реализуются на основе репозитария. В частности, через репозитарий могут осуществляться контроль безопасности (ограничения и привилегии доступа), контроль версий и изменений и т.п.

- Макетирование . CASE-технология дает возможность быстро строить макеты (прототипы) будущей системы, что позволяет заказчику на ранних этапах разработки оценить, насколько она его устраивает и насколько она приемлема для будущих пользователей.

- Генерация документации . Вся документация по проекту генерируется автоматически на базе репозитария (как правило, в соответствии с требованиями действующих стандартов). Несомненное достоинство CASE-технологии заключается в том, что документация всегда отвечает текущему состоянию дел, поскольку любые изменения в проекте автоматически отражаются в репозитарий (известно, что при традиционных подходах к разработке программного обеспечения документация в лучшем случае запаздывает, а ряд модификаций вообще не находит в ней отражения).

- Верификация проекта . CASE-технология обеспечивает автоматическую верификацию и контроль проекта на полноту и состоятельность на ранних этапах разработки, что влияет на успех разработки в целом.

- Автоматическая генерация программного кода . Генерация программного кода осуществляется на основе репозитария и позволяет автоматически построить до 85–90% текстов на языках высокого уровня.

- Сопровождение и реинжиниринг . Сопровождение системы в рамках CASE-технологии характеризуется сопровождением проекта, а не программных кодов. Средства реинжиниринга позволяют создавать модель системы из ее кодов и интегрировать полученные модели в проект, автоматически обновлять документацию при изменении кодов, автоматически изменять спецификации при редактировании кодов и т.п.

Разработка программ начинается с некоторого предварительного варианта системы. В качестве такого варианта может выступать специально для этого разработанный прототип, либо устаревшая система. В последнем случае для восстановления знаний о программной системе с целью последующего их использования применяют повторную разработку – реинжиниринг.

Повторная разработка сводится к построению исходной модели программной системы путем исследования ее программных кодов. Имея модель, можно ее усовершенствовать, а затем вновь перейти к разработке. Одним из наиболее известных принципов такого типа является принцип возвратного проектирования (Round Trip Engineering (RTE)).

Современные CASE-системы обеспечивают и первичную, и повторную разработку, что существенно ускоряет разработку приложений и повышает их качество.

В настоящее время среди прочих требований к CASE-средствам предъявляются следующие:

Наличие возможностей определения основной модели прикладной задачи (бизнес-модели, обычно объектно-ориентированной) и правил ее поведения (бизнес-правил);

Поддержка процесса проектирования с помощью библиотек, оснащенных средствами хранения, поиска и выбора элементов проектирования (объектов и правил);

Наличие средств для создания пользовательского интерфейса и поддержания распространенных программных интерфейсов (поддержка стандартов OLE, OpenDoc, доступ к библиотекам HTML/Java и т.п.);

Наличие возможностей для создания различных распределенных клиент-серверных приложений.

Гайфуллов Руслан, студент 2 курса, специальность прикладная информатика ФГБОУ ВПО Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МГТУ имени Носова»

Аннотация

В данной статье дается определение базы данных. Дальше рассматриваются типы данных в базах данных, и их использование при проектировании баз данных. Потом дается определение Case технологий. А в конце, рассказывается о Case технологиях в проектирования баз данных

CASE technologies in database design

Gayfullov Ruslan, 2nd year student, specialty Applied Informatics, FSBEI HPE “MSTU of a name Nosov”

Аnnotation

In this article provides a definition database. Further describes the types of data in databases and their use in database design. Then provides a definition database. And in the end, tells about case technologies in database design.

ЧТО ТАКОЕ БАЗЫ ДАННЫХ

Базы данных (БД) – множество связанных друг с другом данных, которые организуются со схемой БД для удобной работы с ними пользователя.

Определение из Википедии: Базы данных – множество документов в объективной форме, систематизированных для поиска и обработки с помощью ЭВМ (это электронная вычислительная машина).

База данных – множество данных, хранящихся согласно схеме данных, манипуляция с которыми происходит по правилам средств манипулирования данных.

База данных – сведения, хранящиеся неким упорядоченным способом.

ПРОЕКТИРОВАНИЕ БАЗ ДАННЫХ

Этап проектирования базы данных - процесс создания проекта баз данных, нужной для поддержки функционирования предприятия и способствующей достижению его целей.

Проектирование баз данных – процесс создания схемы БД, а также определение нужных ограничений целостности.

Основные задачи:

Хранение в БД всей нужной информации.

Возможность получить данные по всем нужным запросам.

Уменьшение избыточности и дублирования данных.

Обеспечение целостности и дублирования данных

ЭТАПЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Проектирование БД осуществляется в 3 этапа: концептуальное (инфологическое), логическое (даталогическое), физическое.

Концептуальное проектирование – процесс создания конечной (инфологической) модели данных предприятия (абстрактной структуры баз данных) посредством моделирования данных без учета физических условий (оборудование и программное обеспечение).

Концептуальное (инфологическое) проектирование – создание семантической модели предметной области (информационная модель самого высокого уровня абстракции). Эта модель создаётся без ориентации на СУБД и модель данных. Концептуальная модель БД состоит из описания информационных объектов (понятий предметной области) со связями меж ними и описания ограничений целостности, то есть требований к допускаемым значением данных связей меж ними.

Логическое проектирование – перенесение проекта на внутреннюю модель СУБД (это система управления БД).

Логическое (даталогическое) проектирование – это создание схемы БД с помощью реляционной модели данных.

Даталогическая модель – это набор схем отношений с указанием первичных ключей и связей меж отношениями, являющихся внешними ключами.

Физическое проектирование – это создание схемы БД для конкретно для нужной системы управления БД (например, Access).

Есть еще один вариант этапов проектирования БД:

1 этап: постановка задачи

2 этап: Анализ предметной области.

3 этап: Создание модели.

4 этап: Выбор способов представления информации и программного инструментария.

5 этап: Создание компьютерной модели объекта.

6 этап: Работа с созданной базой данных.

ЧТО ТАКОЕ CASE ТЕХНОЛОГИИ

CASE – инструментарий системных аналитиков для проектирования и разработки. Цель CASE средств – отделить процессы проектирование от программирования. CASE технологии (Computer Aided Software Engineering) совокупность методологий анализа, проектирования, разработки, сопровождения сложных систем программного обеспечения(ПО), поддержанные комплексом взаимоувязанных средств автоматизации. CASE – инструменты и методы программной инженерии для проектирования ПО, обеспечивающее создание высококачественных программ, отсутствие ошибок, а также простоту обслуживания программных продуктов. Также CASE является множеством методов и средств проектирования информационных средств при помощи CASE инструментов.

Case технологии – это методология проектирования ИС и набор инструментов, при помощи которых можно в наглядно смоделировать предметную область, а также проанализировать модель на разных этапах разработки и проектирования, а также разработать приложение с учетом потребностей пользователей.

Средства автоматизации разработки программ – это инструменты для автоматизации процессов проектирования и разработки ПО для системного аналитика, а также разработчика программного обеспечения и программиста. Изначально, Case средствами считали только инструменты, с помощью которых упрощались самые трудоемкие процессы анализа и проектирования, но позже Case средствами стали считать еще и как программные средства поддержки жизненных циклов ПО.

Основной целью CASE технологий является разделение процессов проектирования программных продуктов и кодирования и следующих за ним процессов разработки, а также максимальная автоматизация процесса разработки. Поэтому имеются два совершенно разных подхода к проектированию: структурный и объектно-ориентированный.

Структурный подход предлагает декомпозицию (разделение) задачи на функции, требующие автоматизации. Функции в свою очередь делятся на подфункции, задачи и процедуры. А в конце создается иерархия функций в определенном порядке передающая информацию меж функциями

Также подход использует общепринятые методологии, моделируя разные информационные системы, а именно

SADT (Structured Analysis and Design Technique), DFD (Data Flow Diagrams), а также ERD (Entity Relationship Diagrams).

Есть три основные модели в этом подходе:

функциональные, информационные и динамические

Этот подход реализуют Bpwin, Erwin, Business Studio, IBM WebSphere business modeler и Sybase Power Designer.

В объектно-ориентированном подходе основной инструмент – это язык UML – унифицированный язык моделирования, который может визуализировать и документировать объектно-ориентированные системы, ориентированные на разработку ПО. UML имеет систему разных диаграмм для построения представления о проектируемой системе.

Этот подход реализуют Rational Rose и ARIS.

Case умеет анализировать и программировать программные средства, проектировать интерфейс, документировать, а также производить структурный код на каком-нибудь языке программирования.

Case инструменты делятся на типы и категории:

Типы (здесь отражается функциональная ориентация на разные процессы жизненного цикла разработки ПО и совпадает с составом компонент крупных интегрированных Case систем):

средства анализа, созданные для создания и анализа модели предметной области(Bpwin (logical works).

средства для анализа и проектирования, которые поддерживают самые известные методологии проектирования, создавая с их помощью проектные спецификации. В качестве выхода здесь спецификации компонентов и интерфейсов системы, архитектура систем, алгоритмы м структуры данных.

средства проектирования БД, моделирующие данные и генерирующие схемы БД (на SQL) для систем управления базами данных. Это Erwin (Logic works) и DataBase Designer (Oracle) и Designer/2000.

средства разработки приложений (Developer/2000), Delphi).

средства реинжиниринга, анализирующие программные коды и схемы БД, а также формирование с их помощью разных моделей и проектных спецификаций. Средства анализа схем БД и формирование ERD имеют Designer/2000, Erwin. При анализе программных кодов самыми известными являются объектно-ориентированные Case средства, помогающие проводить реинжиниринг программ на языке С++ (Rational Rose).

Вспомогательные типы

средства планирования и управления проектом (Microsoft Project).

средства конфигурационного управления (PVCS (Intersolv)).

средства тестирования (Quality Works (Segue Software)).

средства документирования (SoDA (Rational Software)).

CASE ТЕХНОЛОГИИ В ПРОЕКТИРОВАНИИ БАЗ ДАННЫХ

В качестве Case технологии я рассмотрю Erwin

На всех стадиях разработки БД, Erwin показывает структуру и основные элементы создаваемой базы данных. Это инструмент разработки, в автоматическом режиме создающий таблицы, а также генерирующий тысячи строк текста хранимых процедур и триггеров для систем управления базами данных. Erwin ускоряет создание приложений для обработки данных.

С Erwin проектирование БД легче. Для этого надо создается графическую E-R модель (объект-отношение), которая удовлетворяет требованиям к данным, а также вводятся бизнес-правила, создавая логическую модель, отображающую элементы, атрибуты, отношения и группировки. Erwin может манипулировать атрибутами при помощи их буксировки, вносить изменения, а также нормализовать во время создания БД. Можно редактировать прямо на диаграммах. Это означает внесение изменений в модель, не открывая специальных диалоговых окон. При помощи отчетов, которые формируются системой, проверяется правильность созданной БД.

Erwin не только инструмент для «рисования», но и автоматизирует проектирование. Ссылочная целостность БД обеспечивается автоматическим переносом ключей. Создающиеся в Erwine модели данных могут редактироваться, просматриваться и распечатываться разными способами. А при помощи RPTwin (имеющей графический интерфейс и умеющей формировать отчеты) и средства для просмотра настраиваемыми режимами, обеспечивающими контроль отображения содержимого отчетов, можно реализовать одинаковые стандарты проектирования и отображения настроек для всех моделей.

Erwin средство для быстрого создания БД. Erwin оптимизирует модель для соответствия физическим характеристикам нужной БД. Так же Erwin самостоятельно согласует логическую и физическую схемы и преобразовывает логические конструкции (например, многие ко многим) в их реализацию на физическом уровне. Реализация и прямого и обратного инжиниринга в Erwin достигается при помощи естественной динамической связи между моделью и базой данных. При помощью этой связи Erwin самостоятельно создает таблицы, представления, индексы, правила поддержания целостности ссылок (первичных и внешних ключей), устанавливает значения по умолчанию, а также ограничения для доменов/столбцов. В Erwine целостность ссылок обеспечивают множество оптимизированных шаблонов триггеров, а также мощный макроязык, при помощи которого создаются свои триггеры и хранимые процедуры. Для точной оценки и характера роста базы данных или хранилища имеются средства расчёта объема, облегчающие эффективное распределение ресурсов системы и планирование мощности.

Количество просмотров публикации: -

Значительно лучше соответствуют большой размерности задачи ие­рархические CASE-модели. Аббревиатура CASE (Computer-Aided Software/System Engineering) означает проектирование программного обеспечения или системы на основе компьютерной поддержки.

CASE-технология - актуальное и интенсивно развивающееся напра­вление создания САПР в области программных продуктов и систем об­работки информации. Практически ни один крупный зарубежный про­граммный продукт не создается в настоящее время без использования CASE-средств.

Среди отечественных систем, созданных с использованием CASE-средств, следует отметить систему БОСС-КОРПОРАЦИЯ фир­мы АйТи. На всех стадиях создания этой системы использовались сред­ства разработки, относящиеся к семейству Oracle 2000 (Designer/2000, Developer/200, Programmer/2000).

Область применения CASE-технологий относится к созданию, пре­жде всего, экономических информационных систем, что объясняется массовостью этих систем.

Следует отметить, что CASE-технологий применяются не только для создания автоматизированных систем управления, но и для разработки моделей систем, помогающих в принятии решений в области страте­гического планирования, управления финансами фирмы, обучения пер­сонала и т.д. Это направление применения CASE-технологий получило свое собственное название - бизнес-анализ.

CASE-технологий применяются также там, где проблематика пред­метной области отличается большой сложностью, например, в разработ­ке системного программного обеспечения.

Рассмотрим методологические основы CASE-технологий.

Основой CASE-методологии является моделирование. CASE-технология - это модельный метод автоматизации проектирования системы.

CASE-технология основана на парадигме: методология - метод - нотации - средства

Методология определяет общие подходы к оценке и выбору вариан­та системы, последовательность стадий и этапов проектирования, под­ходы к выбору методов.

Метод конкретизирует порядок проектирования отдельных компо­нентов системы (например, известны методы проектирования потоков данных в системе, задания спецификаций (описаний) процессов, пред­ставления структур данных в хранилище и т.д.).

Нотации - это графические средства обозначения и правила, пред­назначенные для описания структуры системы, этапов обработки инфор­мации, структуры данных и т. д. Нотации включают графы, диаграммы, таблицы, блок-схемы, формальные и естественные языки.

Наконец, средства - это инструментарии, средства автоматизации проектирования в виде программных продуктов для обеспечения интер­активного режима проектирования (создание и редактирование графи­ческого проекта информационной системы) и кодогенерацни программ (автоматического создания кодов программ системы).

Методология проектирования на основе компьютерной поддержки, очевидно, требует построения формализованного описания ин­формационной системы в виде информационной модели. Построение CASE-модели системы предусматривает декомпозицию системы и ие­рархическое упорядочивание декомпозированных подсистем.

Модель системы должна отражать:

Функциональную часть системы;

Отношения между данными;

Переходы состояний системы при работе в реальном времени. Для моделирования информационной системы в трех указанных аспектах используются три разновидности графических средств с опре­деленными нотациями.

1. Диаграммы потоков данных - DFD (Data Flow Diagrams). Они используются совместно со словарями данных и спецификациями процессов.

2. Диаграммы „сущность-связь" - ERD (Entity Relationship Dia­grams), показывающие отношения между данными.

3. Диаграммы переходов состояний - STD (State Transitign Dia­grams) для отражения зависящего от времени поведения системы (в режиме реального времени).

Ведущая роль в моделировании принадлежит DFD.

DFD предназначена для отражения взаимосвязей источников и при­емников данных (так называемых внешних сущностей по отношению к информационной системе), потоков данных, процессов обработки (вы­числительных процессов, соответствующих функциям системы), храни­лищ данных (накопителей).

Графическое представление диаграммы потоков данных на экране дисплея обеспечивает наглядность моделирования и удобство корректи­ровки основных компонентов модели в интерактивном режиме.

Поскольку графического представления недостаточно для точно­го определения компонентов DFD, используются текстовые описания и другие средства конкретизации процессов обработки и структуры данных.

Так, потоки данных конкретизируются в части их структуры в сло­варях данных. Каждый процесс (функция системы) может быть де­тализирована с помощью DFD нижнего уровня, где он разделяет­ся на несколько процессов с одновременной детализацией потоков данных.

Детализация процессов заканчивается, когда описание каждого де­тализированного процесса может быть сделано с помощью выбранного метода написания алгоритма процесса. Спецификация процесса содер­жит номер и имя процесса, списки имен входных и выходных данных из словаря данных и алгоритм процесса, трансформирующий входные по­токи данных во входные. В CASE-технологии используются такие методы задания алгоритмов процессов, как:

Текстовое описание;

Естественный структурированный язык;

Таблицы решений;

Деревья решений;

Визуальные языки;

Языки программирования.

Языки программирования (С, Cobol и др.) вызывают затруднения в написании алгоритмов применительно к DFD, поскольку требуют использования, помимо потоков данных, словарей данных, и требуют синхронной корректировки спецификаций процессов при корректиров­ке DFD.

Структурированный естественный язык легко понимается не только проектировщиками и программистами, но и конечными пользователями. В этом его достоинство. Однако он не обеспечивает автоматической кодогенерации из-за наличия неоднозначностей.

Таблицы и деревья решений, наглядно отражая связь комбинации условий с необходимыми действиями, не обладают процедурными воз­можностями для кодогенерации программ.

Визуальные языки обеспечивают автоматическую кодогенерацию, но представленные с их помощью спецификации процессов сложно коррек­тировать.

Содержимое каждого хранилища данных, представленного на диа­грамме потока данных, описывается словарем данных и моделью дан­ных ERD. В случае работы системы в реальном времени DFD дополня­ется STD.

Иерархическая структура CASE-модели представлена на рис. 11.9.

Важным методологическим принципом CASE-технологии создания информационной системы является четкое разделение процесса созда­ния системы на 4 стадии:

Предпроектную (стадию анализа, прототипирования, и построения модели требовании к системе);

Проектную, предполагающую логическое проектирование системы (без программирования);

Стадию программирования (включая проектирование физической базы данных);

Послепроектную, включающую в себя ввод в действие, эксплуата­цию и сопровождение системы.

На предпроектной стадии строится модель требований к системе, т. е. подробное описание того, что она должна делать, без указания путей реализации требований.

На проектной стадии происходит уточнение модели требований (раз­работка подробной иерархической модели на основе DFD и специфика­ций процессов) и расширение ее до модели реализации на логическом уровне. В заключение этой стадии происходит тщательный контроль проекта на уровне логической модели реализации.

На следующей стадии (программирования) осуществляется физиче­ское проектирование системы. Эта стадия предусматривает автоматиче­скую кодогенерацию по спецификациям процессов программного обес­печения системы и физическое проектирование базы данных.

Заключительная послепроектная стадия начинается с приемо­сдаточных испытаний. Далее следуют ввод в постоянную эксплуатацию, сопровождение и развитие системы.

Последовательность операций создания информационной системы на основе CASE-технологии представлена на рис. 11.10.

Рассмотрим факторы эффективности CASE-технологии.

1. Следует отметить, что CASE-технология создает возможность и предусматривает перенос центра тяжести в трудоемкости создания системы на предпроектную и проектную стадии. Тщательная проработка этих стадий в интерактивном режиме с компьютер­ной поддержкой уменьшает число возможных ошибок в проекти­ровании, исправлять которые на последующих стадиях затруд­нительно.

2. Доступная для понимания пользователей-непрограммистов графи­ческая форма представления модели позволяет осуществить прин­цип пользовательского проектирования, предусматривающий уча­стие пользователей в создании системы. CASE-модель позволяет достичь взаимопонимания между всеми участниками создания системы (заказчиками, пользователями, проектировщиками, про­граммистами).

3. Наличие формализованной модели системы на предпроектной ста­дии создает возможность для многовариантного анализа с прототипированием и ориентировочной оценкой эффективности вариан­тов. Анализ прототипа системы позволяет скорректировать буду­щую систему до того, как она будет реализована физически. Этот подход ускоряет и удешевляет создание системы.

4. Закрепление в формализированном виде требований к системе из­бавляет проектировщиков от необходимости многочисленных кор­ректировок по новым требованиям пользователей.

5. Отделение проектирования системы от программирования созда­ет устойчивость проектных решений для реализации на разных программно-технических платформах.

6. Наличие формализованной модели реализации системы и соот­ветствующих средств автоматизации позволяет осуществить авто­матическую кодогенерацию программного обеспечения системы и создать рациональную структуру базы данных.

7. На стадии эксплуатации системы появляется возможность вне­сения изменений на уровне модели, не обращаясь к текстам программ, возможно, силами специалистов отдела автоматизации фирмы.

8. Модель системы может использоваться не только как основа ее создания, но и в целях автоматизированного обучения персонала с использованием диаграмм.

9. На основе модели действующей системы может выполняться бизнес-анализ для поддержки управленческих решений и бизнес-реинжиниринг при изменении направления деятельности фирмы.

Рассмотрим программные средства, обеспечивающие CASE-техно-логию. В зависимости от функционального назначения они подразделя­ются на следующие классификационные группировки, обеспечивающие:

Анализ и проектирование информационной системы;

Проектирование баз данных;

Программирование;

Сопровождение и реинжиниринг;

Управление процессом проектирования.

Средства анализа и проектирования служат для построения CASE-модели как действующей, так и реализуемой системы управления. Они поддерживают графическое построение и контроль иерархической модели диаграмм потоков данных и описание ее компонентов. Эти сред­ства позволяют аналитикам и проектировщикам получить доступ к базе данных проектируемой системы (репозитарию).

К таким средствам относятся: отечественный пакет CASE. Аналитик, Design/IDEF (Meta Software), The Developer (ASYST Technologies) и др.

Для согласования требований пользователей создаются прототи­пы пользовательских интерфейсов, включающих в себя меню, экран­ные формы и отчеты в виде таблиц или графиков. Примером про­граммного средства создания пользовательского интерфейса является Developer/2000 (Oracle).

Средства проектирования баз данных обеспечивают логическое мо­делирование данных, автоматическое преобразование моделей данных в третью нормальную форму и генерацию схем баз данных. Примера­ми таких средств является Designer/2000 фирмы Oracle, ERWin (Logic Works) и др.

Средства программирования поддерживают автоматическую кодогенерацию из спецификаций процессов, тестирование и документирование программы. К их числу относятся Programmer/2000 (Oracle), DECASE (DEC), APS (Sage Software) и др.

Средства сопровождения и реижиниринга позволяют вносить изме­нения в систему на уровне моделей при меняющихся условиях бизнеса (Adpac CASE Tools фирмы Adpac и др.).

Средства управления процессом проектирования поддерживают пла­нирование и контроль выполнения комплекса проектных работ, а так­же взаимодействие аналитиков, проектировщиков и программистов на основе общей базы данных проекта (например, Project Workbench фирмы Applied Business Technology). Очевидна актуальность созда­ния интегрированного пакета инструментальных средств поддержки CASE-технологии на всех этапах жизненного цикла информационной системы.

2.2 Разработка концептуальной модели информационной системы.

Концептуальная модель представляет объекты и их взаимосвязи без указывания способов их физического хранения. Таким образом, концептуальная модель является, по существу, моделью предметной области. При проектировании концептуальной модели должна происходить структуризация данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности

обработки. Проектирование концептуальной модели основано на анализе задач, стоящих перед рекламным агентством. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области и выявляемых в результате анализа данных.

Чтобы построить необходимую нам модель, мы привели все имеющиеся данные к третьей нормальной форме, в результате чего получили следующие сущности:

· Виды блюд.

· Персонал.

· Должности.

· Постоянные клиенты.

· Заказы.

Модель строим на логическом уровне (см. рис. 2). Из рисунка 2 видно, что в модели проставлены связи. Рассмотрим их подробнее:

Таблица «Виды блюд» и таблица «Блюда» - установлена связь «один-ко-многим» при помощи первичного ключа «Код вида»;

Таблица «Должности» и таблица «Персонал» - установлена связь «один-ко-многим» при помощи первичного ключа «Код должности»;

Таблица «Блюда» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код блюда»;

Таблица «Персонал» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код работника»;

Таблица «Постоянные клиенты» и таблица «Заказы» - установлена связь «один-ко-многим» при помощи первичного ключа «Код клиента».



Рис. 2. Концептуальная модель данных


2.3 Разработка логической модели информационной системы

Базы данных и программные средства их создания и ведения (СУБД) имеют многоуровневую архитектуру, представление о которой можно получить из рисунка 1.

Схема 1 - Многоуровневое представление данных БД под

управлением СУБД

Различают концептуальный, внутренний и внешний уровни представления этих баз данных, которым соответствуют модели аналогичного назначения.

Концептуальный уровень соответствует логическому аспекту представления данных предметной области в интегрированном виде. Концептуальная модель состоит из множества экземпляров различных типов данных, структурированных в соответствии с требованиями СУБД к логической структуре базы данных.

Внутренний уровень отображает требуемую организацию данных в среде хранения и соответствует физическому аспекту представления данных. Внутренняя модель состоит из отдельных экземпляров записей, физически хранимых во внешних носителях.

Внешний уровень поддерживает частные представления данных, требуемые конкретным пользователям. Внешняя модель является подмножеством концептуальной модели. Возможно пересечение внешних моделей по данным. Частная логическая структура данных для отдельного приложения (задачи) или пользователя соответствует внешней модели или подсхеме БД. С помощью внешних моделей поддерживается санкционированный доступ к данным БД приложений (ограничен состав и структура данных концептуальной модели БД, доступных в приложении, а так же заданы допустимые режимы обработки этих данных: ввод, редактирование, удаление, поиск).

Проектирование базы данных состоит в построении комплекса взаимосвязанных данных. На рисунке 2 условно отображены этапы процесса проектирования базы данных.

Схема 2 - Этапы процесса проектирования базы данных

Важнейшим этапом проектирования базы данных является разработка информационно-логической (инфологической) модели предметной области, не ориентированной СУБД. В инфологической модели средствами структур данных в интегрированном виде отражают состав и структуру данных, а также информационные потребности.

Информационно-логическая (инфологическая) модель предметной области отражает предметную область в виде совокупности информационных объектов и их структурных связей.

При связи один ко многим (1:М) одному экземпляру информации А соответствует 0, 1 или более экземпляров объекта В, но каждый экземпляр объекта В связан не более чем с одним экземпляром объекта А.

Примером связи 1:М служит связь между информационными объектами Фамилия – Оклад:

Фамилия Оклад


В базе данных информация хранится в виде двумерных таблиц. Можно так же импортировать и связывать таблицы из других СУБД или систем управления электронными таблицами. Одновременно могут быть открыты 1024 таблицы.

При определении необходимых таблиц базы данных необходимо обеспечить первые три нормальные формы, т.е. провести нормализацию.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами, т.е. возможна организация различных наборов отношений взаимосвязанных информационных объектов. Группировка атрибутов в отношениях должна быть рациональной, т.е. минимизирующей дублирование данных и упрощающей процедуры их обработки и обновления.

Определённый набор отношений обладает лучшими свойствами при включении, модификации, удалении данных, чем все остальные возможные наборы отношений, если он отвечает требованиям нормализации отношений.

Нормализация отношений – формальный аппарат ограничений на формирование отношений (таблиц), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных.

Е.Коддом выделены три нормальные формы отношений и предложен механизм, позволяющий любое отношение преобразовать к третьей (самой совершенной) нормальной форме.

Первая нормальная форма. Отношение называется нормализованным или приведённым к первой нормальной форме, если все его атрибуты простые (далее неделимы). Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Вторая нормальная форма. Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать пояснения к таким понятиям, как функциональная зависимость и полная функциональная зависимость.

Описательные реквизиты информационного объекта логически связаны с общим для них ключом, эта связь носит характер функциональной зависимости реквизитов.

Функциональная зависимость реквизитов – зависимость, при которой в экземпляре информационного объекта определённому значению ключевого реквизита соответствует только одно значение описательного реквизита.

Такое определение функциональной зависимости позволяет при анализе всех взаимосвязей реквизитов предметной области выделить самостоятельные информационные объекты. В качестве примера рассмотрим графическое изображение функциональных зависимостей реквизитов работников, приведенное на рисунке 5, на котором ключевой реквизит указан звёздочкой.

Рисунок 1 - Графическое изображение функциональной зависимости реквизитов

В случае составного ключа вводится понятие функционально полной зависимости.

Функционально полная зависимость не ключевых атрибутов заключается в том, что каждый не ключевой атрибут функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа.

Отношение будет находиться во второй нормальной форме, если оно находится в первой нормальной форме, и каждый не ключевой атрибут функционально полно зависит от составного ключа.

Третья нормальная форма. Понятие третьей нормальной формы основывается на понятии не транзитивной зависимости.

Транзитивная зависимость наблюдается в том случае, если один из двух описательных реквизитов зависит от ключа, а другой описательный реквизит зависит от первого описательного реквизита.

Отношение будет находиться в третьей нормальной форме, если оно находится во второй нормальной форме, и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.

Для устранения транзитивной зависимости описательных реквизитов необходимо провести “расщепление” исходного информационного объекта. В результате расщепления часть реквизитов удаляется из исходного информационного объекта и включается в состав других (возможно, вновь созданных) информационных объектов.

Создаваемая база данных должна выполнять функции в интересах автоматизации выдачи данных об организации. Она должна иметь простой и наглядный пользовательский интерфейс, иметь минимальные системные требования.

Целью работы является создание базы данных, обеспечивающей:

быстрый ввод новых данных;

хранения и поиск уже введённых данных;

печать необходимого количества персональных отчётов.

Данными являются:

Фамилия, имя, отчество;

Дата рождения;

Занимаемая должность;

Должностной оклад;

Количество фактических дней отработанных за месяц.

Рассмотрев определенные выше задачи можно спроектировать основные таблицы базы данных.

Для этого будем пользоваться средствами Database Desktop

В этой среде создадим все необходимые таблицы для разрабатываемой базы данных. Атрибутами в этой таблице будет:

Фамилия, Имя, Отчество, Дата принятия, Адрес, Телефон, Смены, Не выходы на работу, Ставка, зарплата.

Лекция 16-1 CASE-ТЕХНОЛОГИИ В СОЗДАНИИ ИС

Решение задач проектирования больших размерностей требует применения соответствующих методов и моделей. Ие­рархические CASE-модели (Computer-Aided Software/System Engineering - проектирование программного обеспечения/ системы на основе компьютерной поддержки) во многом отвечают предъявляемым к ним требованиям.

Практически ни один крупный зарубежный про­граммный продукт не создается в настоящее время без использования CASE-средств, а во многих отраслях ведущих стран (особенно госсектор, оборонный комплекс, добывающая промышленность) подготовка проектной документации с использованием CASE-средств является необходимым требованием стандартов.

Областью применения CASE-технологий является, пре­жде всего, создание экономических ИС, особенно там, где проблематика отличается большой сложностью, например, в корпоративных ИС.

Основой CASE-методологии является моделирование. CASE-технология - это модельный метод автоматизации проектирования системы.

CASE-технология основана на взаимосвязи:

методология - метод - нотации - средства

Методология определяет общие подходы к оценке и выбору вариан­та системы, последовательность стадий и этапов проектирования, под­ходы к выбору методов.

Метод конкретизирует порядок проектирования отдельных компо­нентов системы (например, известны методы проектирования потоков данных в системе, задания описаний процессов, пред­ставления структур данных в хранилище и т.д.).

Нотации - графические средства обозначения и правила, пред­назначенные для описания структуры системы, этапов обработки инфор­мации, структуры данных (графы, диаграммы, таблицы, блок-схемы, формальные и естественные языки).

Средства - инструментарии, средства для обеспечения интер­активного режима проектирования (создание и редактирование графи­ческого проекта ИС и кодогенерацни программ).

Построение CASE-модели системы предусматривает декомпозицию системы и ие­рархическое упорядочивание подсистем.

Модель системы должна отражать: функциональную часть системы; отношения между данными; переходы состояний системы при работе.

Для моделирования ИС в указанных аспектах используются разновидности графических средств:

1. Диаграммы потоков данных - DFD (Data Flow Diagrams). Они используются совместно со словарями данных и спецификациями процессов.

2. Диаграммы „сущность-связь" - ERD (Entity Relationship Dia­grams), показывающие отношения между данными.

3. Диаграммы переходов состояний - STD (State Transitign Dia­grams) для отражения зависящего от времени поведения системы (в режиме реального времени).

Ведущая роль в моделировании принадлежит DFD.

DFD предназначена для отражения взаимосвязей источников и при­емников данных, потоков данных, процессов обработки (вы­числительных процессов, соответствующих функциям системы), храни­лищ данных (накопителей).

Графическое представление диаграммы потоков данных на экране дисплея обеспечивает наглядность моделирования и удобство корректи­ровки в интерактивном режиме. Поскольку графического представления недостаточно для точно­го определения компонентов DFD, используются текстовые описания.

Каждый процесс (функция системы) может быть де­тализирована с помощью DFD нижнего уровня, где он разделяет­ся на несколько процессов с одновременной детализацией потоков данных. Детализация процессов заканчивается, когда описание каждого де­тализированного процесса может быть сделано с помощью выбранного метода написания алгоритма процесса.

Визуальные языки обеспечивают автоматическую кодогенерацию, но представленные с их помощью спецификации процессов сложно коррек­тировать.

Важным методологическим принципом CASE-технологии создания информационной системы является четкое разделение процесса созда­ния системы на 4 стадии:

Предпроектную (стадию анализа, прототипирования, и построения модели требовании к системе);

Проектную, предполагающую логическое проектирование системы (без программирования);

Стадию программирования (включая проектирование физической базы данных);

Послепроектную, включающую в себя ввод в действие, эксплуата­цию и сопровождение системы.

На предпроектной стадии строится модель требований к системе, т. е. подробное описание того, что она должна делать, без указания путей реализации требований.

На проектной стадии происходит уточнение модели требований (раз­работка подробной иерархической модели на основе DFD и специфика­ций процессов) и расширение ее до модели реализации на логическом уровне.

На стадии программирования осуществляется физиче­ское проектирование системы. Эта стадия предусматривает автоматиче­скую кодогенерацию по спецификациям процессов программного обес­печения системы и физическое проектирование базы данных.

Заключительная послепроектная стадия начинается с приемо­сдаточных испытаний. Далее следуют ввод в постоянную эксплуатацию, сопровождение и развитие системы.

Достоинства CASE-технологии:

1. CASE-технология создает возможность и предусматривает перенос центра тяжести в трудоемкости создания системы на предпроектную и проектную стадии. Тщательная проработка этих стадий в интерактивном режиме с компьютер­ной поддержкой уменьшает число возможных ошибок в проекти­ровании, исправлять которые на последующих стадиях затруд­нительно.

2. Доступная для понимания пользователей-непрограммистов графи­ческая форма представления модели позволяет осуществить прин­цип пользовательского проектирования, предусматривающий уча­стие пользователей в создании системы. CASE-модель позволяет достичь взаимопонимания между всеми участниками создания системы (заказчиками, пользователями, проектировщиками, про­граммистами).

3. Наличие формализованной модели системы на предпроектной ста­дии создает возможность для многовариантного анализа с ориентировочной оценкой эффективности вариан­тов. Анализ прототипа системы позволяет скорректировать буду­щую систему до того, как она будет реализована физически. Это ускоряет и удешевляет создание системы.

4. Закрепление в формализированном виде требований к системе из­бавляет проектировщиков от многочисленных кор­ректировок.

5. Отделение проектирования системы от программирования созда­ет устойчивость проектных решений для реализации на разных программно-технических платформах.

6. Наличие формализованной модели реализации системы и соот­ветствующих средств автоматизации позволяет осуществить авто­матическую кодогенерацию программного обеспечения системы и создать рациональную структуру базы данных.

7. На стадии эксплуатации системы появляется возможность вне­сения изменений на уровне модели, не обращаясь к текстам программ, возможно, силами специалистов отдела автоматизации фирмы.

8. Модель системы может использоваться не только как основа ее создания, но и в целях автоматизированного обучения персонала с использованием диаграмм.

9. На основе модели действующей системы может выполняться бизнес-анализ для поддержки управленческих решений и бизнес-реинжиниринг при изменении направления деятельности фирмы.

В зависимости от функционального назначения программные средства, обеспечивающие CASE-технологию, подразделя­ются на следующие классификационные группировки, обеспечивающие:

Анализ и проектирование информационной системы;

Проектирование баз данных;

Программирование;

Сопровождение и реинжиниринг;

Управление процессом проектирования.

Средства анализа и проектирования служат для построения CASE-модели как действующей, так и реализуемой системы управления. Они поддерживают графическое построение и контроль иерархической модели диаграмм потоков данных и описание ее компонентов. Эти сред­ства позволяют аналитикам и проектировщикам получить доступ к базе данных проектируемой системы. К таким средствам относятся: отечественный пакет CASE. Аналитик, Design/IDEF (Meta Software), The Developer (ASYST Technologies) и др.

Для согласования требований пользователей создаются прототи­пы пользовательских интерфейсов, включающих в себя меню, экран­ные формы и отчеты в виде таблиц или графиков. Примером является Developer/2000 (Oracle).

Средства проектирования баз данных обеспечивают логическое мо­делирование данных, автоматическое преобразование моделей данных в третью нормальную форму и генерацию схем баз данных. Примера­ми таких средств является Designer/2000 фирмы Oracle, ERWin (Logic Works) и др.

Средства программирования поддерживают автоматическую кодогенерацию из спецификаций процессов, тестирование и документирование программы. К их числу относятся Programmer/2000 (Oracle), DECASE (DEC), APS (Sage Software) и др.

Средства сопровождения и реижиниринга позволяют вносить изме­нения в систему при меняющихся условиях бизнеса (Adpac CASE Tools фирмы Adpac и др.).

Средства управления процессом проектирования поддерживают пла­нирование и контроль выполнения комплекса проектных работ, а так­же взаимодействие аналитиков, проектировщиков и программистов на основе общей БД (Project Workbench фирмы Applied Business Technology).



Понравилась статья? Поделиться с друзьями: