Введение в протокол CAN. CAN-шина не только для автомобилей. Введение в CAN

Администратор

Необходимость последовательного соединения в автомобилях

Это следующая наша переводная статья из цикла посвященного шине CAN, которая еще чуть более подробно раскрывает то, как устроена и функционирует шина КАН. Англоязычный оригинал.

Многие автомобили уже имеют большое количество электронных систем управления. Рост автомобильной электроники является результатом отчасти стремления потребителя к большей безопасности и комфорту, а также отчасти требований правительства по улучшению контроля за выбросами и снижению расхода топлива. Управляющие устройства, отвечающие этим требованиям уже используются в течение некоторого времени в области управления двигателем, коробкой передач и дроссельной заслонкой, а также в антиблокировочных системах (ABS) и системе управления ускорением (ASC) .

Сложность функций, реализованных в этих системах, требует обмена данными между ними. В традиционных системах обмен данными осуществляется с помощью выделенных сигнальных линий, но это становится все труднее и дороже, так как функции управления становятся все более сложными. В случае сложных систем управления (таких как Motronic), в частности, количество соединений не может больше увеличиваться.

Кроме того, разрабатывается ряд систем, реализующих функции, охватывающие более одного управляющего устройства. Например, ASC требует взаимодействия системы управления двигателем и управления дросселем (впрыском) для уменьшения крутящего момента при проскальзывании ведущего колеса. Другим примером функций, охватывающих более одного блока управления, является электронное управление коробкой передач, где легкость переключения передач может быть улучшена путем кратковременной регулировки опережения зажигания.

Если мы также рассмотрим будущие разработки, направленные на общую оптимизацию транспортных средств, то необходимо преодолеть ограничения, существующие в связи с обычными устройствами управления. Это можно сделать только путем объединения в сеть компонентов системы с использованием последовательной шины данных. Bosch разработал для этой цели систему «Controller Area Network» (CAN), которая с тех пор была стандартизирована на международном уровне (ISO 11898) и была «отлита в камне (в кремнии)» несколькими производителями полупроводников.

Используя CAN, одноранговые (одноуровневые) станции (контроллеры, датчики и исполнительные механизмы) подключаются через последовательную шину. Сама шина является симметричной или асимметричной двухпроводной цепью, которая может быть экранированной или неэкранированной. Электрические параметры физической передачи также указаны в стандарте ISO 11898. Подходящие чипы драйвера шины доступны от большого ряда производителей

Протокол CAN, соответствующий уровню канала передачи данных в эталонной модели ISO / OSI, удовлетворяет требованиям автомобильных для применения в автомобилях настоящего времени. В отличие от кабельных древовидных структур, сетевой протокол обнаруживает и исправляет ошибки передачи, вызванные электромагнитными помехами. Дополнительными преимуществами такой сети являются простота конфигурирования всей системы и возможность центральной диагностики.

Цель использования CAN в транспортных средствах заключается в том, чтобы любая станция могла взаимодействовать с любым другим, не налагая слишком большую нагрузку на компьютер контроллера.

Использование CAN сети в автомобилях

Существует четыре основных приложения для последовательной связи в транспортных средствах, каждое из которых имеет разные требования и цели.

Сетевые контроллеры для синхронизации двигателя, трансмиссии, шасси и тормозов. Скорости передачи данных находятся в диапазоне - типичном для систем реального времени от 200 кбит /с до 1 Мбит /с.
Сетевые компоненты общей электроники и электроники шасси, которые делают автомобиль более комфортным. Примерами таких мультиплексных применений являются управление освещением, кондиционирование воздуха и центральный замок, а также регулировка сиденья и зеркала. Особое значение здесь должно быть уделено стоимости компонентов и требованиям к проводке. Типичная скорость передачи данных составляет около 50 кбит / с.
В ближайшем будущем последовательная связь также будет использоваться в области мобильной связи, чтобы связать такие компоненты, как автомобильные радиоприемники, автомобильные телефоны, навигационные средства и т. д., с центральной более эргономичной панелью управления. Функции, определенные в проекте «Прометей», такие как связь между транспортным средством и транспортным средством, будут в большой степени зависеть от последовательной связи.
В настоящее время CAN используется для первых трех приложений, но для диагностики предпочтительным решением является интерфейс в соответствии со стандартом ISO 9141.

Промышленные применения сети CAN

Сравнение требований к шинным системам транспортных средств и системам промышленных полевых шин показывает удивительные сходства: низкая стоимость, работоспособность в жесткой электрической среде, высокие возможности в реальном времени и простота использования одинаково желательны в обоих секторах.

Стандартное использование CAN в «S-классе» Mercedes-Benz и принятие CAN коммерческими автопроизводителями США для быстрой передачи (до 1 Мбит / с) заставляли промышленных пользователей навострить уши. Не только производители мобильных и стационарных сельскохозяйственных и морских машин и оборудования выбрали CAN, но и выбор производителей медицинской аппаратуры, текстильных машин, а также специальной техники и элементов управления лифтами. Система последовательной шины особенно хорошо подходит для сетевых «интеллектуальных» устройств ввода-вывода, а также датчиков и исполнительных механизмов внутри машины или завода.

Промышленность текстильного машиностроения является одним из пионеров CAN. Один производитель оснастил свои ткацкие станки модульными системами управления, сообщающимися в режиме реального времени через сети CAN еще в 1990 году. Тем временем несколько производителей текстильных машин объединились в группу «CAN Textile Users Group», которая, в свою очередь, является членом международной группы пользователей и производителей «CAN in Automation». Аналогичные требования к текстильному оборудованию имеются в упаковочных машинах и машинах для производства и обработки бумаги.

В США ряд предприятий используют CAN в производственных линиях и станках в качестве внутренней системы шин для сетевых датчиков и исполнительных механизмов внутри линии или непосредственно машины. Некоторые пользователи, такие как сектор медицинской инженерии, решили в пользу CAN, поскольку у них были особенно строгие требования безопасности. С аналогичными проблемами сталкиваются и другие производители машин и оборудования с особыми требованиями в отношении безопасности (например, роботы и транспортные системы).

Помимо высокой надежности передачи, низкие затраты на соединение на станцию являются еще одним решающим аргументом для CAN. В приложениях, где цена имеет решающее значение, очень важно, чтобы чипы CAN были доступны от различных производителей. Компактность других чипов контроллера также является важным аргументом, например, в области низковольтных распределительных устройств.

Как функционируют CAN-сети

Принципы обмена данными

Когда данные передаются по CAN, никакие станции не адресуются, но вместо этого содержание сообщения (например, скорость вращения или температура двигателя) обозначается идентификатором, который является уникальным во всей сети. Идентификатор определяет не только содержимое, но и приоритет сообщения. Это важно для распределения шины, когда несколько станций конкурируют за доступ к шине. Если ЦПУ данной станции желает отправить сообщение одной или нескольким станциям, он передает данные и их идентификаторы в назначенный CAN-чип (стостояние «Готово»). Это все, что должен сделать ЦП, чтобы инициировать обмен данными. Сообщение формируется и передается с помощью CAN-чипа. Как только CAN-чип получает выделение шины (состояние «Send Message»), все остальные станции в сети CAN становятся получателями этого сообщения (состояние «Receive Message»). Каждая станция в сети CAN, правильно приняв сообщение, выполняет приемный тест (тест получения), чтобы определить, относятся ли полученные данные к этой станции (состояние «Выбор»). Если данные имеют значение для соответствующей станции, они обрабатываются (состояние «Принято»), в противном случае они игнорируются. Высокая степень гибкости системы и конфигурации достигается благодаря схеме адресации, ориентированной на содержание. Очень просто добавлять станции в существующую сеть CAN без внесения каких-либо изменений в аппаратные или программные средства для существующих станций при условии, что новые станции являются чисто приемниками. Поскольку протокол передачи данных не требует физических адресов назначения для отдельных компонентов, он поддерживает концепцию модульной электроники, а также допускает множественный прием (широковещательный, многоадресный) и синхронизацию распределенных процессов: могут быть переданы измерения, необходимые в качестве информации несколькими контроллерами через сеть таким образом, что для каждого контроллера не требуется иметь свой собственный датчик.



1. Передача вещания и входная фильтрация узлами CAN на предмет того подходящие ли данные для того или иного узла

Неразрушающая побитовая проверка:

Для того, чтобы данные обрабатывались в режиме реального времени, они должны передаваться быстро. Это требует не только физического канала передачи данных со скоростью до 1 Мбит/с, но также требует быстрого распределения шины, когда несколько станций хотят отправлять сообщения одновременно.



2. Принцип неразрушающего побитового проверки(оценки, считывания)

В режиме реального времени безотлагательность (очередность) обмена сообщениями по сети может сильно различаться: быстро изменяющийся размер (например, нагрузка на двигатель) должен передаваться чаще и, следовательно, с меньшими задержками, чем другие измерения (например, температура двигателя), которые изменяются относительно медленно. Приоритет, при котором сообщение передается по сравнению с другим менее срочным сообщением, определяется идентификатором соответствующего сообщения. Приоритеты закладываются при проектировании системы в виде соответствующих двоичных значений и динамически не могут быть изменены. Идентификатор с наименьшим двоичным числом имеет самый высокий приоритет.

Конфликты доступа к шине разрешаются путем побитной проверки каждой из участвующих станций получаемых идентификаторов через наблюдение (считывание) уровня шины бит за битом. В соответствии с «проводным и» механизмом, посредством которого доминирующее состояние (логический 0) перезаписывает рецессивное состояние (логический 1), конкуренция за распределение шины теряется всеми этими станциями с рецессивной передачей и доминирующим наблюдением (ожиданием 0 для получения). Все «проигравшие» автоматически становятся получателями сообщения с наивысшим приоритетом и не передают повторную передачу до тех пор, пока шина не будет доступна снова.

Эффективность распределения шины:

Эффективность системы распределения шины определяется в основном возможным применением для этой системы последовательной шины. Чтобы судить о том, какие шинные системы подходят, для каких приложений литература включает метод классификации процедур распределения шины. Обычно мы различаем следующие классы:

Распределение по фиксированному графику. Распределение производится последовательно каждому участнику для максимальной продолжительности независимо от того, нужена ли этому участнику шина в данный момент или нет (примеры: маркерная ячейка или передача маркера).
Распределение шины на основе необходимости. Шина назначается одному участнику на основании невыполненных запросов на передачу, то есть система распределения учитывает только участников, желающих передать (примеры: CSMA, CSMA / CD, управляющий полет, циклическая или побитовая проверка). Для CAN распределение шины согласовано исключительно между сообщениями, ожидающими передачи. Это означает, что процедура, определенная CAN, классифицируется как распределение на основе необходимости.

Еще одним средством оценки эффективности систем проверки(оценки) шины является метод доступа к шине:

Неразрушающий доступ к шине. С помощью методов этого типа шина назначается одной и только одной станции либо немедленно, либо в течение определенного времени после одного доступа к шине (одной или несколькими станциями). Это гарантирует, что каждый доступ к шине одной или несколькими станциями приводит к однозначному распределению шины (примеры: : маркерная ячейка, передача маркера, циклическая обработка, побитовая проверка.
Разрушающее распределение шины. Одновременный доступ к шине более чем одной станцией приводит к прерыванию всех попыток передачи и, следовательно, успешное распределение шины отсутствует. Для распределения шины может потребоваться более одного доступа к шине, количество попыток до успешного распределения шины является чисто статистической величиной (примеры: CSMA / CD, Ethernet). Чтобы обрабатывать все запросы на передачу сети CAN, соблюдая ограничения времени ожидания при как можно более низкой скорости передачи данных, CAN-протокол должен реализовывать метод распределения шины, который гарантирует, что всегда имеется однозначное распределение шины, даже если есть одновременныё доступ к шине с разных станций.

Метод поразрядной проверки с использованием идентификатора сообщений, которые должны передаваться, однозначно разрешает любое столкновение между несколькими станциями, которые хотят передавать, и он делает это самое позднее в течение 13 (стандартного формата) или 33 (расширенного формата) битовых периодов для любого периода доступа к шине. В отличие от проверки по сообщениям, используемого методом CSMA / CD, этот неразрушающий метод разрешения конфликтов гарантирует, что пропускная способность шины не используется без передачи полезной информации.

Даже в ситуациях, когда шина перегружена, связь приоритета доступа к шине с содержимым сообщения оказывается полезным атрибутом системы по сравнению с существующими протоколами CSMA / CD или токенными(маркерными) протоколами: несмотря на недостаточную пропускную способность шины, все невыполненные запросы на передачу обрабатываются в порядке их важности для всей системы (как определено приоритетом сообщения).

Имеющаяся пропускная способность эффективно используется для передачи полезных данных, так как «пробелы» в распределении шины остаются очень маленькими. Падение всей системы передачи из-за перегрузки, что может произойти с протоколом CSMA / CD, невозможен при CAN. Таким образом, CAN позволяет реализовать быстрый, трафик-определенный доступ к шине, который является неразрушающим из-за побитовой проверке на основе используемого приоритета сообщения.

Неразрушающий доступ к шине можно разделить на:

Централизованное управление доступом к шине и
Децентрализованное управление доступом к шине

В зависимости от того, присутствуют ли механизмы управления в системе только один раз (централизованный) или более одного раза (децентрализованный).

Система связи с назначенной станцией (в частности, для централизованного управления доступом к шине) должна обеспечивать стратегию, которая вступает в силу в случае сбоя основной станции. Эта концепция имеет тот недостаток, что стратегия управления отказами является сложной и дорогостоящей для реализации, а также того, что захват центральной станции резервной станцией может занять очень много времени.

По этим причинам и для того, чтобы обойти проблему надежности ведущей станции (и, следовательно, всей системы связи), протокол CAN реализует децентрализованное управление шиной. Все основные механизмы связи, в том числе контроль доступа к шине, выполняются несколько раз в системе, потому что это единственный способ удовлетворить высоким требованиям к доступности системы связи.

В целом можно сказать, что CAN реализует трафик-определенную систему распределения шин, которая позволяет с помощью неразрушающего доступа к шине с децентрализованным управлением доступом обеспечить высокую полезную скорость передачи данных при минимально возможной скорости передачи данных шины в условиях занятости шины для всех станций. Эффективность процедуры проверки шины увеличивается за счет того, что шина используется только теми станциями, которые ожидают передачи запросов.

Эти запросы обрабатываются в порядке важности сообщений для системы в целом. Это особенно выгодно в случае перегрузки. Так как доступ к шине имеет приоритет на основе сообщений, можно гарантировать низкие индивидуальные задержки в системах реального времени.



3. Кадр сообщения для стандартного формата (CAN Specification 2.0A)

Форматы сообщений.

Протокол CAN поддерживает два формата фреймов (кадров) сообщения, единственное существенное отличие заключается в длине идентификатора (ID). В стандартном формате длина идентификатора равна 11 битам, а в расширенном формате длина равна 29 битам. Кадр сообщения для передачи по шине содержит семь основных полей.

Сообщение в стандартном формате начинается с стартового бита «начало кадра», за ним следует «поле проверки», которое содержит идентификатор и бит «RTR» (запрос удаленной передачи), который указывает, является ли это кадр с данными или кадр запроса без каких-либо байтов данных (кадр удаленного запроса).

«Поле управления» содержит бит расширения IDE (идентификатор расширения), который указывает либо стандартный формат, либо расширенный формат, бит зарезервирован для будущих расширений и - в последних 4 битах - счет байтов данных в поле данных.

«Поле данных» находится в диапазоне от 0 до 8 байтов в длину и сопровождается полем «CRC», которое используется в качестве проверки безопасности кадра для обнаружения битовых ошибок.

Поле «ACK» содержит слот ACK (1 бит) и разделитель ACK (один рецессивный бит). Бит в слоте ACK отправляется как рецессивный бит и перезаписывается в качестве доминантного бита теми приемниками, которые на этот момент времени приема данных приняли их корректно(правильно) (положительное подтверждение). Правильные сообщения подтверждаются приемниками независимо от результата приемочной проверки. Конец сообщения обозначается «конец кадра». «Перерыв» - это минимальное количество периодов битов, разделяющих последовательные сообщения. Если какой-либо станции нет следующего доступа к шине, шина остается бездействующей («bus idle»).

Обнаружение и сигнализация об ошибках.

В отличие от других систем шины CAN-протокол не использует сообщения подтверждения, а вместо этого сигнализирует о любых возникающих ошибках. Для обнаружения ошибок в протоколе CAN реализованы три механизма на уровне сообщения:

Циклическая проверка избыточности (CRC) CRC защищает информацию в кадре путем добавления избыточных проверочных битов на конце передачи. На конце приемника эти биты повторно вычисляются и проверяются на соответствие принятым битам. Если они не согласны, произошла ошибка CRC. Проверка кадра - этот механизм проверяет структуру передаваемого кадра, проверяя битовые поля на фиксированный формат и размер фрейма. Ошибки, обнаруженные при проверке кадров, обозначаются как «ошибки формата».
Ошибки ACK. Как уже упоминалось выше, полученные кадры подтверждаются всеми получателями посредством «положительного подтверждения». Если не получено подтверждение передатчиком сообщения (ошибка ACK), это может означать, что есть ошибка передачи, которая была обнаружена только получателями, что поле ACK было повреждено или что нет приемников.

Протокол CAN также реализует два механизма обнаружения ошибок на уровне битов.

Мониторинг. Способность передатчика обнаруживать ошибки основана на контроле сигналов шины: каждый узел, который передает, также наблюдает за уровнем шины и, таким образом, обнаруживает различия между отправленным битом и полученным битом. Это обеспечивает надежное обнаружение всех глобальных ошибок и ошибок, локальных для передатчика.
Набивка бит - кодирование отдельных битов проверяется на уровне битов. Битовое представление, используемое CAN, - это кодирование NRZ (non-return-to-zero), которое гарантирует максимальную эффективность в кодировании битов. Края синхронизации генерируются посредством заполнения битов, то есть после пяти последовательных равных битов отправитель вставляет в поток битов бит информации с дополнительным значением, которое удаляется приемниками. Проверка кода ограничивается проверкой соблюдения правила заполнения. Если одна или несколько ошибок обнаруживаются по меньшей мере одной станцией (любой станцией) с использованием указанных выше механизмов, текущая передача прерывается отправкой «флага ошибки». Это предотвращает прием другими станциями сообщений и, таким образом, обеспечивает согласованность данных на протяжении всей сети.

После прекращения передачи ошибочного сообщения отправитель автоматически повторяет попытку передачи (автоматический запрос повторения). Может снова возникнуть конкуренция за распределение шины. Как правило, повторная передача начинается в течение 23-битных периодов после обнаружения ошибки; В особых случаях время восстановления системы составляет 31 бит.

Однако эффективным и действенным описанный метод может быть в случае, когда неисправность станции может привести к прерыванию всех сообщений (в том числе и правильных), что блокирует систему шини, если не было предпринято никаких мер для самоконтроля. Таким образом, протокол CAN обеспечивает механизм для выделения спорадических ошибок из постоянных ошибок и локализации отказов станций (ограничение ошибок). Это делается путем статистической оценки ситуаций, связанных с ошибками станции, с целью распознавания собственных дефектов станции и возможного входа в режим работы, когда остальная часть сети CAN не подвергается негативному воздействию. Это может дойти до того, что станция выключится сама по себе, чтобы предотвратить ошибочное распознование некорректных сообщений среди тех, что были прерваны.

Надежность данных протокола CAN:

Внедрение в автомобилях систем, связанных с безопасностью, связано с высокими требованиями к надежности передачи данных. Цель часто формулируется так, чтобы не допускать возникновения опасных ситуаций для водителя в результате обмена данными в течение всего срока службы транспортного средства.

Эта цель достигается, если надежность данных достаточно высока или вероятность остаточной ошибки достаточно низкая. В контексте данных шинных систем под надежностью понимается способность идентифицировать данные, искаженные ошибками передачи. Остаточная вероятность ошибки является статистической мерой ухудшения надежности данных: она определяет вероятность искажения данных и того, что это повреждение будет оставаться незамеченным. Вероятность остаточной ошибки должна быть настолько мала, что в среднем никакие поврежденные данные не останутся незамеченными на протяжении всего срока службы системы.



4. Вероятность остаточной ошибки как функция вероятности ошибки бита

Вычисление вероятности остаточной ошибки требует классификации ошибок и того, что весь путь передачи описывается моделью. Если мы определим вероятность остаточной ошибки CAN как функцию вероятности ошибки в битах для длин сообщений от 80 до 90 бит, для системных конфигураций, например, пяти или десяти узлов и с частотой ошибок 1/1000 (ошибка в одном сообщении из каждой тысячи), то максимальная вероятность ошибки в битах составляет приблизительно от 0,02 – до порядка 10^-13. Исходя из этого, можно рассчитать максимальное количество необнаруживаемых ошибок для данной сети CAN.

Например, если сеть CAN работает со скоростью передачи данных 1 Мбит/с, при среднем использовании пропускной способности шины 50%, при общем сроке службы 4000 часов и при средней длине сообщения 80 бит, то общее число Передаваемых сообщений составляет 9x10^10. Статистическое число необнаруженных ошибок передачи в течение срока эксплуатации, таким образом, составляет менее чем порядка 10^-2. Или, иначе говоря, с продолжительностью работы восемь часов в день на 365 дней в году и частотой ошибок каждые 0,7 с, одна необнаруженная ошибка происходит раз в тысячу лет (статистическое среднее значение).

Сообщения CAN расширенного формата

Подкомитет SAE «Грузовые автомобили и автобусы» стандартизовал сигналы и сообщения, а также протоколы передачи данных для различных скоростей передачи данных. Стало очевидно, что стандартизацию такого рода легче реализовать, когда доступно более длинное поле идентификации.

Чтобы поддержать эти усилия, протокол CAN был расширен за счет введения 29-битного идентификатора. Этот идентификатор состоит из существующего 11-битного идентификатора (базового ID) и 18-битного расширения (ID-расширения). Таким образом, протокол CAN позволяет использовать два формата сообщений: StandardCAN (Версия 2.0A) и ExtendedCAN (Версия 2.0B). Поскольку два формата должны сосуществовать на одной шине, устанавливается, какое сообщение имеет более высокий приоритет на шине в случае коллизий доступа к шине с форматами сглаживания и одним и тем же базовым идентификатором: стандартное сообщение всегда имеет приоритет над сообщением в расширенном формате.

CAN-контроллеры, которые поддерживают сообщения в расширенном формате, могут также отправлять и получать сообщения в стандартном формате. Только сообщения в стандартном формате могут передаваться по всей сети, если в этой сети используются CAN-контроллеры, которые поддерживают только стандартный формат (Версия 2.0A). Сообщения в расширенном формате будут неправильно поняты. Однако есть CAN-контроллеры, которые поддерживают только стандартный формат, но распознают сообщения в расширенном формате и игнорируют их (версия 2.0B пассивная).

Различие между стандартным форматом и расширенным форматом осуществляется с использованием бита IDE (бит расширения идентификатора), который передается как доминирующий в случае кадра в стандартном формате. Для кадров в расширенном формате это рецессивно. Бит RTR передается доминантно или рецессивно в зависимости от того, передаются ли данные или запрашивается конкретное сообщение от станции. Вместо бита RTR в стандартном формате бит SRR (замена удаленного запроса) передается для кадров с расширенным идентификатором. Бит SRR всегда передается как рецессивный, чтобы гарантировать, что в случае проверки стандартный кадр всегда имел приоритетное распределение шины к расширенному кадру, когда оба сообщения имеют одинаковый базовый идентификатор.

В отличие от стандартного формата, в расширенном формате за битом IDE следует 18-битный ID-номер, бит RTR и зарезервированный бит (r1).

Все следующие поля идентичны стандарту. Соответствие между двумя форматами обеспечивается тем фактом, что CAN-контроллеры, которые поддерживают расширенный формат, могут также обмениваться данными в стандартном формате



5. Кадр сообщения для расширенного формата (CAN Specification 2.0A)

Реализации протокола CAN

Связь идентична для всех реализаций протокола CAN. Однако существуют различия в отношении того, в какой степени реализация осуществляет передачу сообщений от микроконтроллеров, которые следуют за ней в схеме. Связь идентична для всех реализаций протокола CAN. Однако существуют различия в отношении того, в как реализуется передача сообщений от микроконтроллеров, которые следуют за ней в схеме.

CAN-контроллер с промежуточным буфером

Контроллеры CAN с промежуточным буфером (ранее называемые чипами basicCAN) реализовали в качестве аппаратного обеспечения логику, необходимую для создания и проверки потока битов согласно протоколу. Однако администрирование наборов данных, которые должны быть отправлены и получены, в частности, фильтрация приёма осуществляется только CAN-контроллером.

Как правило, CAN-контроллеры с промежуточным буфером имеют два приема и один буфер передачи. 8-разрядные регистры кода и маски допускают ограниченную фильтрацию принятия (8 MSB идентификатора). Подходящий выбор этих значений регистра позволяет считывать группы идентификаторов или, в пограничных случаях, выбирать все идентификаторы. Если для дифференцирования сообщений требуется более 8 ID-MSB, тогда микроконтроллер, следующий за CAN-контроллером в схеме, должен дополнять фильтрацию принятия программным обеспечением.

Контроллеры CAN с промежуточным буфером могут перенести большую нагрузку на микроконтроллер с фильтрацией приёма, но они требуют только небольшой площади кристалла и поэтому могут быть изготовлены с меньшими затратами. В принципе, они могут принимать все объекты в сети CAN.

CAN-контроллер с хранилищем объектов.

Объекты CAN состоят в основном из трех компонентов: идентификатора, кода длины данных и фактических полезных данных.

CAN-контроллеры с хранилищем объектов (ранее называемые fullCAN) функционируют как CAN-контроллеры с промежуточными буферами, но также управляют определенными объектами. Там, где есть несколько одновременных запросов, они определяют, например, какой объект должен быть передан первым. Они также выполняют фильтрацию принятия для входящих объектов. Интерфейс к следующему микроконтроллеру соответствует ОЗУ. Данные, подлежащие передаче, записываются в соответствующую область ОЗУ, полученные данные считываются из области ОЗУ, соответственно. Микроконтроллер должен управлять только несколькими битами (например, запросом передачи).

Контроллеры CAN с хранилищем объектов рассчитаны на максимальную нагрузку от локального микроконтроллера. Однако эти CAN-контроллеры требуют большей площади кристалла и, следовательно, более дороги. В дополнение к этому, они могут администрировать только ограниченное количество чипов(микроконтроллеров).

На сегодняшний день доступны контроллеры CAN, которые сочетают в себе оба принципа реализации. Они имеют хранилище объектов, по крайней мере одно из которых спроектировано как промежуточный буфер. По этой причине больше нет смысла дифференцировать basicCAN и fullCAN.

CAN подчиненные контроллеры для функций ввода / вывода.

Также как CAN-контроллеры, которые поддерживают все функции CAN-протокола, есть CAN-чипы, для которых не требуется следующий за ним микроконтроллер. Эти CAN-чипы называются SLIO (последовательное соединение ввода / вывода). CAN-чипы являются подчиненными и должны управляться CAN-мастером(центральный, основной микроконтроллер в сети).

Физическое соединение CAN

Скорости передачи данных (до 1 Мбит / с) требуют достаточно крутого наклона импульса, который может быть реализован только с использованием силовых элементов. В принципе возможно несколько физических соединений. Тем не менее, пользователи и производители группы «CAN in Automation» рекомендуют использовать схемы драйверов в соответствии с ISO 11898.

Встроенные микросхемы драйверов в соответствии с ISO 11898 доступны от нескольких компаний (Bosch, Philips, Siliconix и Texas Instruments). Международная группа пользователей и производителей (CiA) также определяет несколько механических соединений (кабель и разъемы).



6. Physical CAN Connection according to ISO 11898

С уважением, перевод предоставлен коллективом мастерской

Сетевой интерфейс CAN (Controller Area Network) был разработан в 1987г. (версия 1.0) фирмами BOSCH и INTEL для создания бортовых мультипроцессорных систем реального времени. Последняя спецификация интерфейса 2.0, разработанная фирмой BOSCH в 1992г., является дополнением предыдущей версии. В международной организации по стандартизации зарегистрирован ISO 11898 (для высокоскоростных приложений) и ISO 11519-2 (для низкоскоростных приложений).

Принцип работы

CAN является высокоинтегрированным сетевым интерфейсом передачи данных со скоростью до 1 Мбит/сек. Устройства в CAN-системе соединяются по шине, состоящей из 3-х проводов (2 сигнальных и один общий) (см. рис.).

Сообщения данных, передаваемые из любого узла по CAN-шине, могут содержать от 1 до 8 байт. Каждое сообщение помечено идентификатором, который в сети является уникальным (например: "Нагрев до 240", "Отказ нагрева","Бункер загружен", и т.д.). При передаче другие узлы сети получают сообщение и каждый из них проверяет идентификатор. Если сообщение имеет отношение к данному узлу, то оно обрабатывается, в противном случае - игнорируется. CAN-контроллер каждого из устройств может обрабатывать одновременно несколько идентификаторов (например, контроллеры SIEMENS и INTEL могут обрабатывать до 15). Таким образом, в каждом из устройств можно легко организовать несколько "виртуальных" каналов обмена информацией с различными устройствами, включая каналы одновременного получения сообщений.

Рис. 1. Соединение устройств по CAN-шине

Идентификаторы

Идентификатор определяет тип и приоритет сообщения. Более низкому числовому значению идентификатора соответствует более высокое значение приоритета. Сообщение, имеющее более высокий приоритет, передается раньше сообщения, имеющего более низкий приоритет. После сообщения с высоким приоритетом передается сообщение с более низким приоритетом, если во время передачи не появится сообщение с более высоким приоритетом, затем передается сообщение с еще более низким приоритетом и т. д.

Физическая шина

Представляет собой витую пару (экранированную или неэкранированную) и общий провод. Плоская пара (телефонный тип кабеля) также работает хорошо, но более чувствительна к внешним источникам шума.

Высокая надёжность

Для обеспечения безотказной работы в тяжёлых условиях по стандарту ISO11898 CAN-контроллер обеспечивает работу в сети в следующих случаях:

  • любой из 3-х проводов в шине оборван,
  • любой провод - закорочен на питание,
  • любой провод - закорочен на общий провод.

При обрыве 2-х проводов часть функций основной системы может быть реализована в каждой из подсистем, созданных обрывом.

Сетевая гибкость и лёгкость расширения

Принятая в CAN-сети схема передачи сообщений обеспечивает большие возможности при создании, расширении и модернизации систем.

Новые устройства, предназначенные для приёма данных, могут добавляться к сети без изменения уже существующих программных средств, если их подключение не приводит к превышению нагрузочной способности и максимальной длины шины. При этом новые сетевые устройства способны обмениваться информацией между собой, не нарушая работоспособность старой системы, если в протоколе обмена были использованы новые идентификаторы.

В CAN-сети имеется возможность одновременной передачи сообщений сразу нескольким устройствам. Эта особенность позволяет передавать по ней синхросигналы.

Арбитраж CAN-шины

В любой системе некоторые из параметров изменяются быстрее, чем другие. Например, скорость ротора двигателя, как правило, изменяется за меньший промежуток времени, чем температура его корпуса или положение заслонки. Быстро изменяющиеся параметры должны передаваться более часто и, следовательно, требуют более высокого приоритета. Во время работы также возможно появление аварийных сообщений, которые должны передаваться с наивысшим приоритетом (например, превышение допустимой температуры, обрыв управляющего соленоида, короткое замыкание в цепи и т.д.).

Узлы CAN-сети являются равноправными при обмене, и каждый из них в любой момент времени может иметь сообщение, требующее безотлагательной передачи. Вероятность одновременного требования передачи от различных устройств не является чем-то необычайным, а случается регулярно. Для разрешения подобного конфликта требуется быстродействующий механизм распределения очередности передачи сообщений. Для этого в CAN-системе используется Неразрушающий Поразрядный Арбитраж .

Приоритет CAN-сообщения определяется двоичным значением его идентификатора.

Числовое значение каждого идентификатора сообщения назначается в начальной фазе проектирования системы. Идентификатор с самым низким числовым значением идентификатора имеет самый высокий приоритет. Передача логического нуля по CAN-шине осуществляется токовой посылкой, а состояние логической единицы определяется по отсутствию тока. В процессе передачи каждый из источников сообщений, который имеет необходимость в передаче, начинает передавать свой идентификатор, одновременно проверяя его на линии. Если в процессе передачи обнаруживается несовпадение (т.е. "лишний" ноль), то передатчик, обнаруживший это несоответствие, прекращает передачу своего идентификатора и переключается на прием. Конфликта на шине при этом нет, так как значение бита с уровнем логической единицы фактически не передается, и в результате сообщение с наивысшим приоритетом проходит по шине так, как будто оно единственное. В следующем цикле шины будет передано сообщение с более низким приоритетом, и т.д. Таким образом достигается максимальная пропускная способность шины и минимальная задержка для "горячих" сообщений.

Рис. 2. Соединение устройств по CAN-шине

Обнаружение Ошибок

CAN содержит 5-ступенчатый механизм обнаружения ошибок:

  • циклический контроль по избыточности (CRC),
  • контроль передаваемого поля битов,
  • контроль сигнала "Подтверждение Приема",
  • текущий контроль логического уровня битов,
  • контроль заполнения битов.

Циклический контроль по избыточности (CRC)

Каждое переданное сообщение содержит контрольный код (CRC), вычисленный передатчиком на основе содержания передаваемого сообщения. Приёмные узлы выполняют аналогичную операцию, помечают обнаруженные ошибки и устанавливают соответствующие флаги.

Текущий контроль логического уровня битов

Любой передатчик автоматически контролирует и сравнивает фактический логический уровень битов на шине с уровнем, который он передает. Если уровни не совпадают, помечается ошибка логического уровня битов.

(Примечание: этот механизм также используется при арбитраже шины для определения приоритета сообщения, однако ошибка в этом случае, естественно, не возникает).

Контроль передаваемого поля битов

В составе CAN-сообщения передаются предопределенные битовые комбинации, которые контролируются при приёме. Если приемник обнаруживает недопустимый бит в одной из этих комбинаций, то устанавливается флаг ошибки формата.

Контроль заполнения битов

CAN использует методику добавления заполняющего бита для дополнительного контроля передаваемых сообщений. После передачи пяти последовательных битов с одинаковым уровнем передатчик автоматически вводит в разрядный поток бит противоположного значения. Приемники сообщения автоматически удаляют такие биты перед обработкой сообщения. Если обнаруживается шестой бит одинаковой полярности, то помечается ошибка заполнения битов.

Контроль сигнала "Подтверждение Приема"

Каждое переданное сообщение подтверждается приемником, и если этого не произошло, тогда устанавливается флаг ошибки подтверждения приема.

Флаг ошибки

В случае если обнаружена ошибка, то узел, обнаруживший ошибку, прерывает передачу посылкой флага ошибки. При этом передатчик автоматически реинициализирует передачу сообщения, что предотвращает все узлы от возникновения ошибок и гарантирует непротиворечивость данных в сети.

С учетом действия всех механизмов контроля, реальное значение возникновения необнаруженной ошибки в CAN-системе - 10-11 .

Формат CAN-сообщения

Стандартный CAN-протокол (версия 2.0A) поддерживает формат сообщения с 11-разрядными идентификаторами (Стандартное сообщение).

Расширенный CAN-протокол (версия 2.0B) поддерживает 11-битовый и 29-битовый форматы идентификаторов (Расширенное сообщение).

Большинство контроллеров версии 2.0A передают и принимают только сообщения стандартного формата, хотя часть из них могут только получать сообщения расширенного формата.

Контроллеры версии 2.0B могут посылать и получать сообщения в обоих форматах.

Различия форматов

В версии 2.0B поле битов идентификатора состоит из двух частей.

Первая часть (основная часть идентификатора) имеет длину одиннадцать битов для совместимости с версией 2.0A, вторая часть - восемнадцать битов (расширение идентификатора), что дает общую длину идентификатора в двадцать девять бит.

Для различения форматов используются биты Identifier Extension (IDE) и Substitute Remote Request (SRR) в Поле Арбитража.

ENG 192Kb Control Area Network Rus CAN 2.0 A Rus CAN 2.0 В CAN протоколы высокого уровня Шины для бортовых автомобильных систем

CAN (Control Area Network) - последовательная магистраль, обеспечивающая увязку в сеть "интеллектуальных" устройств ввода/вывода, датчиков и исполнительных устройств некоторого механизма или даже предприятия. Характеризуется протоколом, обеспечивающим возможность нахождения на магистрали нескольких ведущих устройств, обеспечивающим передачу данных в реальном масштабе времени и коррекцию ошибок, высокой помехоустойчивостью. Система CAN обеспечена большим количеством микросхем, обеспечивающих работу подключенных к магистрали устройств, разработку которых начинала фирма BOSH для использования в автомобилях, и в настоящее время широко используемых в автоматизации промышленности. Цеколёвка разема приведена на рисунке.

  • Предназначен для организации высоконадежных недорогих каналов связи в распределенных системах управления. Интерфейс широко применяется в промышленности, энергетике и на транспорте. Позволяет строить как дешевые мультиплексные каналы, так и высокоскоростные сети.
  • Скорость передачи задается программно и может быть до 1 Мбит/с. Пользователь выбирает скорость, исходя из расстояний, числа абонентов и емкости линий передачи.
Расстояние, м 25 50 100 250 500 1000 2500 5000
Скорость, Кбит/с 1000 800 500 250 125 50 20 10
  • Максимальное число абонентов, подключенных к данному интерфейсу фактически определяется нагрузочной способностью примененных приемопередатчиков. Например, при использовании трансивера фирмы PHILIPS PCA82C250 она равна 110.
  • Протокол CAN использует оригинальную систему адресации сообщений. Каждое сообщение снабжается идентификатором, который определяет назначение передаваемых данных, но не адрес приемника. Любой приемник может реагировать как на один идентификатор, так и на несколько. На один идентификатор могут реагировать несколько приемников.
  • Протокол CAN обладает развитой системой обнаружения и сигнализации ошибок. Для этих целей используется поразрядный контроль, прямое заполнение битового потока, проверка пакета сообщения CRC-полиномом, контроль формы пакета сообщений, подтверждение правильного приема пакета данных. Хемминговый интервал d=6. Общая вероятность необнаруженной ошибки 4.7x10 -11 .
  • Система арбитража протокола CAN исключает потерю информации и времени при "столкновениях" на шине.
  • Интерфейс с применением протокола CAN легко адаптируется к физической среде передачи информации. Это может быть дифференциальный сигнал, оптоволокно, просто открытый коллектор и т.п. Несложно делается гальваническая развязка.
  • Элементная база, поддерживающая CAN, широко выпускается в индустриальном исполнении.

Входящий в МК STM32 CAN-контроллер является полнофункциональным CAN-узлом, отвечающий требованиям к активным и пассивным устройствам CAB 2.0A и 2.0B и поддерживающий передачу данных на скорости не более 1 Мбит/сек. CAN-контроллер оснащен также дополнительными возможностями для организации детерминистической передачи данных по специальному CAN-протоколу передачи в реальном времени TTCAN. После активизации функции TTCAN будет поддерживаться автоматическая повторная передача сообщений и автоматическая вставка в CAN-пакет двух дополнительных байт с зафиксированным моментом времени передачи сообщения. Все эти возможности необходимы в системах управления через CAN-интерфейс в масштабе реального времени.

Полное наименование CAN-контроллера - модуль bxCAN, где bx указывает на поддержку модулем дополнительных возможностей. Обычный модуль CAN использует один буфер приема и передачи, а у расширенного модуля CAN используется несколько буферов приема и передачи. Модуль bxCAN является гибридом двух архитектур модулей CAN. У него имеется три почтовых ящика для передаваемых сообщений и два почтовых ящика для принимаемых сообщений. Каждый из принимающих почтовых ящиков имеет буфер FIFO для помещения в него трех сообщений. Данная архитектура является компромиссной с точки зрения производительности передачи данных и занимаемого места в кристалле ИС.


Модуль CAN оснащен тремя почтовыми ящиками для передачи сообщений и имеет возможность автоматической вставки в сообщение текущего времени по протоколу TTCAN

Следующая важная функция CAN-контроллера - фильтрация получаемых сообщений. Поскольку CAN является широковещательной шиной, каждое переданное сообщение принимается всеми узлами шины. В CAN-шине любой разумной степени сложности передается достаточно большое число сообщений. Задачей каждого подключенного к CAN-узлу ЦПУ является реагирование на CAN-сообщения. Таким образом, чтобы избавить CAN-контроллер от проблемы приема в буфер нежелательных сообщений, необходима их фильтрация. У CAN-контроллера микроконтроллеров STM32 имеется 14 банков фильтров, которые можно использовать для блокировки всех CAN-сообщений, кроме избранных сообщений или групп сообщений.


14 фильтров сообщений поддерживают две конфигурации, которые можно использовать для фильтрации индивидуальных сообщений

Каждый банк фильтров состоит из двух 32-битных регистров и может работать в одном из четырех режимов. При использовании базового метода в каждый регистр банка фильтров записывается идентификатор сообщения. После поступления сообщения проверяется его идентификатор и, исходя из этого, принимается решение о приеме или отклонении сообщения. Данный режим поддерживает две конфигурации. В первой конфигурации регистры банков фильтров являются 3-битными и могут использоваться для фильтрации 11- и 29-битных полей идентификаторов сообщения, а также бит RTR и IDE в 16-битном режиме.

Во второй конфигурации, в первый 32-битный регистр записывается идентификатор сообщения, во второй - маска сообщения. Регистр маски маркирует биты регистра идентификатора, как "важный" или "неважный". Благодаря этому, появляется возможность принимать группу сообщений с помощью одного банка фильтров. Если принимающие фильтры пропускают сообщение, то вместе с ним принимающий буфер FIFO будет записан указатель на определивший совпадение фильтр. Это позволит прикладной программе ускорить идентификацию сообщения без необходимости считывания и дешифрации идентификатора пакета сообщения.

Все CAN-контроллеры поддерживают два режима работы: нормальный режим для приема и передачи пакетов сообщений и режим инициализации для задания параметров связи. Как уже говорилось, МК STM32 могут работать в экономичном режиме SLEEP. В этом режиме синхронизация модуля bxCAN отключена, однако доступ к регистрам почтовых ящиков остается возможным. Модуль bxCAN имеет возможность активизации работы при обнаружении активности на шине CAN. Его работу можно также реактивировать прикладной программой. Работая в нормальном режиме, поддерживаются два дополнительных подрежима. Первый подрежим - режим SILENT. В нём CAN-контроллер может принимать сообщения, но не может передавать и не генерирует бит ошибок в посылке и подтверждения сообщения. Данный режим рассчитан на CAN-шины с пассивным мониторингом. Второй подрежим - режим LOOPBACK. В этом режиме, передаваемые сообщения сразу же принимаются в приемный буфер. Он необходим для реализации диагностических функций и также полезен на фазе отладки кода программы. Оба рассмотренных режима можно комбинировать. Они идеальны для выполнения функций самотестирования при подключении к работающей шине.

Впервые идея CAN была предложена в середине 80-х немецкой компанией Robert Bosch, которая задумывала ее в качестве экономичного средства для объединения контроллеров, расположенных внутри автомобиля. Традиционный способ связи распределенных по объекту контроллеров жгутами проводов по своей технической сложности, по ценовым и по весовым параметрам для столь массового изделия, коим является автомобиль, оказался непригоден. Требовалось альтернативное решение, сокращающее количество проводов, поэтому был предложен протокол CAN, для которого достаточно любой проводной пары.

Идея заключалась в том, чтобы создать сетевое решение для распределённых систем, работающих в реальном времени. Первоначально CAN применялся в автомобилях, но затем область его применения расширилась и на проблемы автоматизации технологических процессов.

CAN обеспечивает высокий уровень защиты данных от повреждения даже при работе в сложных условиях (сильные помехи), при этом достигается достаточно большая скорость передачи данных (до 1 Mbit/s). Важным достоинством CAN является также то, что разработчик системы может влиять на приоритет сообщений с тем чтобы самые важные из них не ожидали в очереди на отправку. Это свойство CAN позволяет строить сети, поддерживающие реальный масштаб времени.

Высокая степень и надежности сети благодаря развитым механизмам обнаружения и исправления ошибок, самоизоляции неисправных узлов, нечувствительность к высокому уровню электромагнитных помех обеспечивает сети широчайшую сферу применения.

Среди многочисленных факторов, обеспечивших взлет популярности CAN в последние годы, следует отметить разнообразие элементной базы CAN и ее дешевизну.

Немалую роль играет и возможность поддержки разнотипных физических сред передачи данных - от дешевой витой пары до оптоволокна и радиоканала. А ряд оригинальных механизмов сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с) способствуют эффективной реализации режима реального времени в системах распределенного управления.

Топология сети CAN.

В любой реализации CAN - носитель (физическая среда передачи данных) интерпретируется как эфир, в котором контроллеры, работают как приемники и передатчики. При этом, начав передачу, контроллер не прерывает слушание эфира, в частности он отслеживает и контролирует процесс передачи текущих, предаваемых им же, данных. Это означает, что все узлы сети одновременно принимают сигналы передаваемые по шине. Невозможно послать сообщение какому-либо конкретному узлу. Все узлы сети принимают весь трафик передаваемый по шине. Однако, CAN-контроллеры предоставляют аппаратную возможность фильтрации CAN-сообщений.

CAN сеть предназначена для коммуникации так называемых узлов. Каждый узел состоит из двух составляющих. Это собственно CAN контроллер, который обеспечивает взаимодействие с сетью и реализует протокол, и микропроцессор (CPU).

CAN контроллеры соединяются с помощью шины, которая имеет как минимум два провода CAN_H и CAN_L , по которым передаются сигналы при помощи специализированных ИМС приемо-передатчиков. Кроме того, ИМС приемо-передатчиков реализуют дополнительные сервисные функции:

  • Регулировка скорости нарастания входного сигнала путем изменением тока на входе.
  • Встроенная схема ограничения тока защищает выходы передатчиков от повреждения при возможных замыканиях линий CAN_H и CAN_L с цепями питания, а также от кратковременного повышения напряжения на этих линиях.
  • Внутренняя тепловая защита.
  • Режим пониженного энергопотребления, в котором приемники продолжают сообщать контроллеру о состоянии шины для того, чтобы при обнаружении на шине информационных сигналов он мог вывести приемопередатчики в нормальный режим работы.

Наиболее широкое распространение получили два типа приемоперадатчиков (трансиверов):

  • "High Speed" приемопередатчики (ISO 11898-2),
  • "Fault Tolerant" приемопередатчики

Трансиверы, выполненные в соответствии со стандартом "High-Speed" (ISO11898-2), наиболее просты, дешевы и дают возможность передавать данные со скоростью до 1 Мбит/c. "Fault-Tolerant" приемопередатчики (не чувствительные к повреждениям на шине) позволяют построить высоконадежную малопотребляющую сеть со скоростями передачи данных не выше 125 кбит/c.

Физический уровень канала CAN.

Физический уровень (Physical Layer) протокола CAN определяет сопротивление кабеля, уровень электрических сигналов в сети и т.п. Существует несколько физических уровней протокола CAN (ISO 11898, ISO 11519, SAE J2411). В подавляющем большинстве случаев используется физический уровень CAN определенный в стандарте ISO 11898.

ISO 11898 в качестве среды передачи определяет двухпроводную дифференциальную линию с импедансом (терминаторы) 120 Ом (допускается колебание импеданса в пределах от 108 Ом до 132 Ом.

Максимальная скорость сети CAN в соответствие с протоколом равна 1 Mbit/s. При скорости в 1 Mbit/sec максимальная длина кабеля равна примерно 40 метрам. Ограничение на длину кабеля связано с конечной скоростью распространения сигнала и механизмом побитового арбитража (во время арбитража все узлы сети должны получать текущий бит передачи одновременно, те сигнал должен успеть распространится по всему кабелю за единичный отсчет времени в сети.

Соотношение между скоростью передачи и максимальной длиной кабеля приведено в таблице: скорость передачи максимальная длина сети 1000 Кбит/сек 40 метров 500 Кбит/сек 100 метров 250 Кбит/сек 200 метров 125 Кбит/сек 500 метров 10 Кбит/сек 6 километров.

Разъемы для сети CAN до сих пор НЕ СТАНДАРТИЗОВАНЫ. Каждый протокол высокого уровня обычно определяет свой тип разъемов для CAN-сети.

Логический ноль регистрируется, когда на линии CAN_H сигнал выше, чем на линии CAN_L.
Логическая единица - в случае когда сигналы CAN_HI и CAN_LO одинаковы (отличаются менее чем на 0.5 В).
Использование такой дифференциальной схемы передачи делает возможным работу CAN сети в очень сложных внешних условиях.
Логический ноль - называется доминантным битом, а логическая единица - рецессивным. Эти названия отражают приоритет логической единицы и нуля на шине CAN.

При одновременной передаче в шину лог. нуля и единицы, на шине будет зарегестрирован только логический ноль (доминантный сигнал), а логическая единица будет подавлена (рецессивный сигнал).

Арбитраж шины CAN.

Быстродействие CAN сети (до 1 Mbit/s) достигается благодаря механизму недеструктивного арбитража шины посредством сравнения бит конкурирующих сообщений. Т.е. если случится так что одновременно начнут передачу несколько контроллеров, то каждый из них сравнивает бит, который собирается передать на шину с битом, который пытается передать на шину конкурирующий контроллер. Если значения этих битов равны оба контроллера пытаются передать следующий бит. И так происходит до тех пор пока значения передаваемых битов не окажутся различными. Теперь контроллер, который передавал логический ноль (более приоритетный сигнал) будет продолжать передачу, а другой(другие) контроллер прервёт свою передачу до того времени пока шина вновь не освободится. Конечно,если шина в данный момент занята,то контроллер не начнет передачу до момента её освобождения.

Эта спецификация CAN исходит из предположения, что все CAN контроллеры принимают сигналы с шины одновременно. Т.е. в одно и то же время один и тот же бит принимается всеми контроллерами в сети. С одной стороны такое положение вещей делает возможным побитовый арбитраж, а с другой стороны ограничивает длину CAN bus. Сигнал распространяется по CAN bus с огромной, но конечной, скоростью и для правильной работы CAN нужно, чтобы все контроллеры "услышали" его почти одновременно. Почти, потому что каждый контроллер принимает бит в течении определённого промежутка времени, отсчитываемого системным часам. Таким образом, чем выше скорость передачи данных, тем меньшая длинна CAN bus возможна.

Структура формата передачи данных.

Данные по CAN сети пересылаются в виде отдельных кадров стандартного формата. Наиболее важными полями являются поле идентификатора (identifier) и собственно данные (data).

Идентификатор служит уникальным именем для типа сообщения и определяет то, кем будет принято и как будет интерпретировано следующее за ним поле данных. Чему именно (арифметически) равно это число, в общем случае не имеет значения. Такая контекстная адресация отличается рядом достоинств для сетей небольшого масштаба. Она обеспечивает максимально возможную простоту модернизации. Поскольку децентрализованные контроллеры никак не связаны между собой логически, добавление нового элемента в систему никак не повлияет на поведение всех остальных.

Более интересным представляется использование идентификаторов в качестве основного инструмента, используемого в процедуре разрешения коллизий. В CAN в качестве основного критерия для разбора коллизий, для принятия решения, кому отдать эфир, используется приоритет сообщений. Если одновременно несколько станций начали передачу, и при этом произошла коллизия, происходит суперпозиция передаваемых идентификаторов. Идентификаторы последовательно, побитно (bitwise), начиная со старшего, налагаются друг на друга и в их "противоборстве" выигрывает тот, у кого меньше арифметическое значение идентификатора, а значит, выше приоритет. Доминантный "нуль" подавит единицы и в любом случае к концу передачи поля идентификатора оно станет равно более приоритетному значению. Таким образом, система позволяет на уровне проектирования (и определения идентификатра) для любого сообщения в системе заранее предопределить его приоритетность в обслуживании.

Приоритетность сообщения, таким образом определяется значением идентификатора. Приоритет тем больше, чем идентификатор меньше. Как правило контроллер позволяет задавать лишь эти два поля. Остальные поля используются для передачи специфических данных, необходимых для функционирования CAN.

Форматы кадра.

Данные в CAN передаются короткими сообщениями-кадрами стандартного формата. В CAN существуют четыре типа сообщений:

  • Data Frame
  • Remote Frame
  • Error Frame
  • Overload Frame

Data Frame - это наиболее часто используемый тип сообщения. Он состоит из следующих основных частей: поле арбитража (arbitration field) определяет приоритет сообщения в случае, когда два или более узлов одновременно пытаются передать данные в сеть.

Поле арбитража состоит в свою очередь из:

  • для стандарта CAN-2.0A, 11-битного идентификатора + 1 бит RTR (retransmit)
  • для стандарта CAN-2.0B, 29-битного идентификатора + 1 бит RTR (retransmit)

Следует еще раз отметить, что поле идентификатора, несмотря на свое название никак не идентифицирует само по себе ни узел в сети, ни содержимое поля данных.

Для Data кадра бит RTR всегда выставлен в логический ноль (доминантный сигнал). Поле данных (data field) содержит от 0 до 8 байт данных поле CRC (CRC field) содержит 15-битную контрольную сумму сообщения, которая используется для обнаружения ошибок слот подтверждения (Acknowledgement Slot) (1 бит), каждый CAN-контроллер, который правильно принял сообщение посылает бит подтверждения в сеть. Узел, который послал сообщение слушает этот бит, и в случае если подтверждение не пришло, повторяет передачу. В случае приема слота подтверждения передающий узел может быть уверен лишь в том, что хотя бы один из узлов в сети правльно принял его сообщение.

Remote Frame - это Data Frame без поля данных и с выставленным битом RTR (1 - рецессивные бит). Основное предназначение Remote кадра - это инициация одним из узлов сети передачи в сеть данных другим узлом. Такая схема позволяет уменьшить суммарный трафик сети. Однако, на практике Remote Frame сейчас используется редко (например, в DeviceNet Remote Frame вовсе не используется).

Error Frame - это сообщение которое явно нарушает формат сообщения CAN. Передача такого сообщения приводит к тому, что все узлы сети регистрируют ошибку формата CAN-кадра, и в свою очередь автоматически передают в сеть Error Frame. Результатом этого процесса является автоматическая повторная передача данных в сеть передающим узлом. Error Frame состоит из поля Error Flag, которое состоит из 6 бит одинакового значения (и таким образом Error frame нарушает проверку Bit Stuffing, см. ниже), и поля Error Delimiter, состоящее из 8 рецессивных битов. Error Delimiter дает возможность другим узлам сети обнаружив Error Frame послать в сеть свой Error Flag.

Overload Frame - повторяет структуру и логику работы Error кадра, с той разницей, что он используется перегруженным узлом, который в данный момент не может обработать поступающее сообщение, и поэтому просит при помощи Overload-кадра о повторной передаче данных. В настоящее время Overload-кадр практически не используется.

Мехнизм обработки ошибок.

Надежность CAN сети определяется также механизмами обнаружения ошибок. Стандарт CAN определяет следующие методы обнаружения ошибок в сети CAN:

  • Check Bit monitoring
  • Bit stuffing
  • Frame check
  • ACKnowledgement Check
  • Check CRC

Check Bit monitoring - каждый узел во время передачи битов в сеть сравнивает значение передаваемого им бита со значением бита которое появляется на шине. Если эти значения не совпадают, то узел генерирует ошибку Bit Error. Естественно, что во время арбитража на шине (передача поля арбитража в шину) этот механизм проверки ошибок отключается.

Bit stuffing - когда узел передает последовательно в шину 5 бит с одинаковым значением, то он добавляет шестой бит с противоположным значением. Принимающие узлы этот дополнительный бит удаляют. Если узел обнаруживает на шине больше 5 последовательных бит с одинаковым значением, то он генерирует ошибку Stuff Error.

Frame Check - некоторые части CAN-сообщения имеют одинаковое значение во всех типах сообщений. Т.е. протокол CAN точно определяет какие уровни напряжения и когда должны появляться на шине. Если формат сообщений нарушается, то узлы генерируют ошибку Form Error.

ACKnowledgement Check - каждый узел получив правильное сообщение по сети посылает в сеть доминантный (0) бит. Если же этого не происходит, то передающий узел регистрирует ошибку Acknowledgement Error.

CRC Check - каждое сообщение CAN содержит CRC сумму, и каждый принимающий узел подсчитывает значение CRC для каждого полученного сообщения. Если подсчитанное значение CRC суммы, не совпадает со значением CRC в теле сообщения, принимающий узел генерирует ошибку CRC Error.

Каждый узел сети CAN, во время работы пытается обнаружить одну из пяти возможных ошибок. Если ошибка обнаружена, узел передает в сеть Error Frame, разрушая тем самым весь текущий трафик сети (передачу и прием текущего сообщения). Все остальные узлы обнаруживают Error Frame и принимают соответствующие действия (сбрасывают принятое сообщение).

Кроме того, каждый узел ведет два счетчика ошибок:

  • Transmit Error Counter (счетчик ошибок передачи) и
  • Receive Error Counter (счетчик ошибок приема).

Эти счетчики увеличиваются или уменьшаются в соответствие с несколькими правилами. Сами правила управления счетчиками ошибок достаточно сложны, но сводятся к простому принципу, ошибка передачи приводит к увеличению Transmit Error счетчика на 8, ошибка приема увеличивает счетчик Receive Error на 1, любая корректная передача/прием сообщения уменшают соответствующий счетчик на 1. Эти правила приводят к тому, что счетчик ошибок передачи передающего узла увеличивается быстрее, чем счетчик ошибок приема принимающих узлов. Это правило соответствует предположению о большой вероятности того, что источником ошибок является передающий узел.

Каждый узел CAN сети может находится в одном из трех состояний. Когда узел стартует он находится в состоянии Error Active. Когда, значение хотя бы одного из двух счетчиков ошибок превышает предел 127, узел переходит в состояние Error Passive. Когда значение хотя бы одного из двух счетчиков превышает предел 255, узел переходит в состояние Bus Off.

Узел находящийся в состоянии Error Active в случае обнаружения ошибки на шине передает в сеть Active Error Flags. Active Error Flags сотстоит из 6 доминантных бит, поэтому все узлы его регистрируют.

Узел в состоянии Passive Error передает в сеть Passive Error Flags при обнаружении ошибки в сети. Passive Error Flags состоит из 6 рецессивных бит, поэтому остальные узлы сети его не замечают, и Passive Error Flags лишь приводит к увеличению Error счетчика узла.

Узел в состоянии Bus Off ничего не передает в сеть (не только Error кадры, но вообще никакие другие).

Адресация и протоколы высокого уровня

Однако сетевых сервисов спецификации Robert Bosch CAN Specification 2.0A/B и международного стандарта ISO 11898 зачастую явно недостаточно для эффективной разработки CAN-сетей. Дело в том, что упомянутые документы описывают лишь два самых нижних уровня эталонной (семиуровневой) модели взаимосвязи открытых систем OSI/ISO физический и канальный. Определены форматы сообщений, процессы передачи данных длиной до 8 байт, механизмы обнаружения ошибок, некоторые физические параметры среды передачи данных (только в ISO 11898) и др.
Но "за кадром" остаются такие важные на этапе разработки моменты, как адресация узлов, распределение между ними CAN-идентификаторов, интерпретация содержимого фрейма данных, передача данных длиной более 8 байт и др.

В CAN не существует явной адресации сообщений и узлов, сообщения не имеют явной адресации приемника. Источник выставляет на шину свой идентификатор и данные, а приемник самостоятельно, исходя из решаемых задач, обрабатывет принятые данные от данного источника, либо игнорирует их.
Протокол CAN нигде не указывает что поле арбитража (Identification field + RTR) должно использоваться как идентификатор сообщения или узла. Таким образом, идентификаторы сообщений и адреса узлов могут находится в любом поле сообщения (в поле арбитража или в поле данных, или присутствовать и там, и там).

С другой стороны, стандарт протокола предусматривает возможность удаленного запроса данных (RTR). В отличие от предыдущего описания, приемник не ожидает появления необходимых данных, а запрашивает данные у необходимого узла.

Точно также протокол не запрещает использовать поле арбитража для передачи данных.

Стандарт CAN не регламентирует каким образом конкретные приложения будут передавать специфичные для себя данные по сети CAN. Т.о. возникает потребность в использовании какого-нибудь протокола верхнего уровня. Можно придумать свой протокол, который позволял бы приложениям работать с CAN сетью просто и удобно, но едва ли стоит тратить на это силы, если уже существует множество высокоуровневых протоколов на основе CAN технологии. Причём это открытые протоколы, т.е. можно получить уже готовые спецификации и даже участвовать в дальнейшем развитии данных систем.

Поэтому с началом массового выпуска CAN- компонентов и широкого распространения CAN-приложений рядом независимых компаний и некоммерческих ассоциаций в области систем промышленной автоматизации, транспорта и т. д. проводилась (и продолжается по сей день) работа по созданию и стандартизации спецификаций протоколов верхнего уровня HLP (Higher Level Protocol) для CAN-сетей.

Утилизация поля арбитража и поля данных, и распределение адресов узлов, идентификаторов сообщений и приоритетов в сети является предметом рассмотрений так называемых протоколов высокого уровня (HLP - Higher Layer Protocols).

Название HLP отражает тот факт, что протокол CAN описывает только два нижних уровня эталонной сетевой модели ISO/OSI, а остальные уровни описываются протоколами HLP.

К настоящему времени известно уже более четырех десятков CAN HLP. Среди подобного многообразия CAN HLP наибольшее распространение, в особенности в системах промышленной автоматизации, получили четыре, поддерживаемых ассоциацией CiA, а именно:

  • CAL/ CANopen,
  • CAN Kingdom,
  • DeviceNet и

CAL/CANopen

Разработка и поддержка открытого протокола прикладного уровня для сетей промышленной автоматизации были одними из приоритетных целей создания организации CiA в 1992 году. Основой такого протокола послужил HLP, разработанный фирмой Philips, после доработки и усовершенствования которого рабочей группой CiA, в 1993 году была опубликована спецификация CAL CAN Application Level (CiA DS 20x).

Сетевые CAN приложения, основанные на прикладном уровне CAL, в настоящее время успешно работают в медицинской электронике, системах контроля дорожного движения, на транспорте, в промышленном оборудовании. Результатом дополнения CAL (точнее, некоторого его подмножества) системой профилей (устройств, интерфейсов, приложений и т. д.) и спецификациями физического уровня (типы соединителей, правила битового квантования и т. д.) явилось появление более "конкретного" стандарта протокола CANopen. По существу CANopen является приложением прикладного уровня CAL. Первоначально CANopen предназначался для сетей управления движущимися механизмами в системах промышленной автоматики.
Однако впоследствии протокол нашел применение в медицине, морской электронике, на транспорте и в системах автоматизации зданий. CANopen базируется на двух уровнях стандарта CAN (ISO 11898, Bosch CAN Specification 2.0 A/B). В дополнение к спецификациям физического уровня ISO 11898 (среда передачи данных двухпроводная дифференциальная линия), CANopen содержит собственные правила битового квантования, а также определяет три рекомендуемых типа соединителей. Разводкой контактов для всех типов соединителей предусмотрена возможность подачи питания на трансиверы узлов, имеющих гальваническую развязку. В сети CANopen определены восемь градаций скоростей передачи данных: 1 Мбит/с, 800 кбит/с, 500, 250, 125, 50, 20 и 10 кбит/с. Поддержка скорости 20 кбит/с является обязательной для всех модулей.

CAN Kingdom

Протокол шведской компании KVASER-AB (www.kvaser.se) занимает особое место среди CAN HLP благодаря оригинальной концепции сетевого взаимодействия и эффективности CAN-приложений на его основе.

Началу работ над первой версией (текущая третья) протокола CAN Kingdom в 1990 году предшествовал многолетний опыт компании в области создания систем распределенного управления. Протокол был специально разработан для управления движущимися машинами и механизмами промышленными роботами, текстильными станками, мобильными гидравлическими устройствами, и позволяет достичь высокой производительности в режиме реального времени при удовлетворении жестких требований безопасности.

CAN Kingdom является также основой американского военного стандарта CDA 101 и широко используется в военной технике от надувных лодок и систем наведения на цели до сверхзвуковых истребителей и ракет. Основной целью создания протокола было предоставление системному разработчику максимальной свободы в реализации своих идей при построении сети, сохранив при этом возможность использования стандартных модулей от независимых производителей. CAN Kingdom не является "готовым" протоколом в том смысле, в каком это справедливо, например, по отношению к стандартам типа CANopen или DeviceNet. Это скорее набор примитивов метапротокол, с помощью которых можно "собрать" протокол под конкретную сеть модулей. Этим достигается уникальное сочетание простоты интеграции готовых модулей с высокой степенью "закрытости" оригинального протокола. Краеугольным камнем концепции сетевого взаимодействия CAN Kingdom является принцип: "Модули обслуживают сеть" (MSN Modules Serves the Network) в отличие от принципа "Сеть обслуживает пользователей" (NSM Network Serves the Modules), свойственного компьютерным сетям.

В сеть CAN Kingdom не существует каких-либо рекомендуемых скоростей передачи данных. Но за первые 200 мс после подачи питания узел обязан настроиться на прослушивание шины на скорости 125 кбит/ с. Допустимы отличающиеся от ISO 11898 спецификации физического уровня.

DeviceNet

DeviceNet протокол, разработанный и опубликованный в 1994 году компанией Allen-Bradley (www.ab.com) корпорации Rockwell и впоследствии переданный в ведение специально организованной для его поддержки ассоциации ODVA (Open DeviceNet Vendor Association Inc., www.odva.org).

DeviceNet недорогое, простое и эффективное решение для объединения разнообразных устройств промышленной автоматизации независимых производителей в единую систему: фото-, термодатчики, стартеры, считыватели штриховых кодов, элементы человеко- машинного интерфейса клавиатуры, дисплейные панели, наряду с управляющими устройствами PLC, компьютерами и т. д. При разработке протокола помимо снижения стоимости также стояла задача упрощения и унификации диагностики подобных устройств. Первые устройства, удовлетворяющие спецификации DeviceNet, появились на рынке в начале 1995 года. DeviceNet также построен на двух нижних уровнях стандарта CAN, дополненных более детальными, чем в других HLP, спецификациями физической среды.

Сеть DeviceNet имеет шинную топологию с отводами. Физической средой передачи является 4- проводной кабель (CAN_H, CAN_L, Vcc, Ground), причем возможны две его разновидности: толстый (внешний диаметр 12,2 мм) и тонкий (6,9 мм). Определены лишь три значения скорости передачи данных 125, 250 и 500 кбит/с.

Важной особенностью сети DeviceNet является возможность питания модулей непосредственно от сетевого кабеля (24 В, до 8 А на толстом кабеле), а также допускается применение нескольких источников питания в любой точке шины. Все это дает возможность построения автономной сети, не зависящей от наличия или качества внешнего питания, а при необходимости позволит легко демонтировать и снова развернуть систему на новом месте.

Сеть DeviceNet допускает "горячее" (без обесточивания сети) подключение и отключение модулей. Стандарт DeviceNet содержит также подробное описание многочисленных типов переходников, разветвителей (одиночных и многопортовых), соединителей (Mini, Micro), сетевых отводов и т. п. При описании организации типов данных, сетевого поведения модулей в DeviceNet используется объектно-ориентированная модель.

Максимальное число узлов в сети DeviceNet 64.

SDS (Smart Distributed System)

SDS разработка компании Honeywell Inc. (Micro Switch Division, www.honeywell.sensing.com). Наряду со стандартом DeviceNet, SDS представляет собой еще одно недорогое и законченное решение для сетевого управления интеллектуальными датчиками и актуаторами от центрального контроллера (PLC, компьютера) в системах промышленной автоматизации. По степени завершенности от спецификаций физической среды до прикладного уровня, ориентировке на снижение стоимости, SDS-стандарт напоминает DeviceNet. Шинная топология представляет собой линейную шину (магистраль или транк) с короткими отводами.

Определены два базовых типа кабельной разводки:

  • Mini (применяемый при сборке транка сети) 4-проводной кабель с максимальной токовой нагрузкой 8 А, 5-контактный разъем и
  • Micro (для подключения физических устройств к сети) 4-проводной кабель, 3 А, 4-контактный разъем без отдельного контакта для экрана кабеля.

В сети SDS допускается и обычная проводная разводка с использованием открытых клеммных соединителей. Всеми типами кабельной разводки и соединителей, также как и в сети DeviceNet, предусмотрено подведение питающего напряжения к узлам.

Сеть SDS всегда требует наличия единственного мастера-менеджера сети как минимум на этапе включения для выполнения автонастройки скорости передачи модулей. В процессе работы сети допускается наличие нескольких мастеров на шине, но они должны функционировать в пределах своих адресных доменов, а при включении сети только один из них может брать на себя функцию сетевого менеджера для автонастройки скорости устройств.



Понравилась статья? Поделиться с друзьями: