Эталонная модель OSI. Уровень представления данных

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Рассмотрим в данной статье назначение уровней эталонной модели osi, с подробным описанием каждого из семи уровней модели.

Процесс организации принципа сетевого взаимодействия, в компьютерных сетях, довольно-таки сложная и непростая задача, поэтому для осуществления этой задачи решили использовать хорошо известный и универсальный подход - декомпозиция.

Декомпозиция - это научный метод, использующий разбиение одной сложной задачи на несколько более простых задач - серий (модулей), связанных между собой.

Многоуровневый подход:

  • все модулей дробятся на отдельные группы и сортируются по уровням, тем самым создавая иерархию;
  • модули одного уровня для осуществления выполнения своих задач посылает запросы только к модулям непосредственно примыкающего нижележащего уровня;
  • включается работу принцип инкапсуляции – уровень предоставляет сервис, пряча от других уровней детали его реализации.

На Международную Организацию по Стандартам (International Standards Organization, ISO, созданная в 1946 году) возложили задачу создания универсальной модели, которая четко разграничит и определит различные уровни взаимодействия систем, с поименованными уровнями и с наделением каждого уровня своей конкретной задачи. Эту модель назвали моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI .

Эталонная Модель Взаимосвязи Открытых Систем (семиуровневая модель osi) введена в 1977 г.

После утверждения данной модели, проблема взаимодействия была разделена (декомпозирована) на семь частных проблем, каждая из которых может быть решена независимо от других.

Уровни эталонной модели OSI представляют из себя вертикальную структуру, где все сетевые функции разделены между семью уровнями. Следует особо отметить, что каждому такому уровню соответствует строго описанные операции, оборудование и протоколы.

Взаимодействие между уровнями организовано следующим образом:

  • по вертикали - внутри отдельно взятой ЭВМ и только с соседними уровнями.
  • по горизонтали - организовано логическое взаимодействие - с таким же уровнем другого компьютера на другом конце канала связи (то есть сетевой уровень на одном компьютере взаимодействует с сетевым уровнем на другом компьютере).

Так как семиуровневая модель osi состоит из строгой соподчиненной структуры, то любой более высокий уровень использует функции нижележащего уровня, причем распознает в каком именно виде и каким способом (т.е. через какой интерфейс) нужно передавать ему поток данных.

Рассмотрим, как организуется передача сообщений по вычислительной сети в соответствии с моделью OSI. Прикладной уровень - это уровень приложений, то есть данный уровень отображается у пользователя в виде используемой операционной системы и программ, с помощью которой выполняется отправка данных. В самом начале именно прикладной уровень формирует сообщение, далее оно передается представительному уровню, то есть спускается вниз по модели OSI. Представительный уровень, в свою очередь, проводит анализ заголовка прикладного уровня, выполняет требуемые действия, и добавляет в начало сообщения свою служебную информацию, в виде заголовка представительного уровня, для представительного уровня узла назначения. Далее движение сообщения продолжается вниз, спускается к сеансовому уровню, и он, в свою очередь, также добавляет свои служебные данные, в виде заголовка вначале сообщения и процесс продолжается, пока не достигнет физического уровня.

Следует отметить, что помимо добавления служебной информации в виде заголовка вначале сообщения, уровни могут добавлять служебную информацию и в конце сообщения, который называется "трейлер".

Когда сообщение достигло физического уровня, сообщение уже полностью сформировано для передачи по каналу связи к узлу назначения, то есть содержит в себе всю служебную информацию добавленную на уровнях модели OSI.

Помимо термина "данные" (data), которое используется в модели OSI на прикладном, представительном и сеансовом уровнях, используются и другие термины на других уровнях модели OSI, чтобы можно было сразу определить на каком уровне модели OSI выполняется обработка.

В стандартах ISO для обозначения той или иной порции данных, с которыми работают протоколы разных уровней модели OSI, используется общее название - протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней часто используются специальные названия: кадр (frame), пакет (packet), сегмент (segment).

Функции физического уровеня

  • на этом уровне стандартизируются типы разъемов и назначение контактов;
  • определяется, каким образом представляются "0" и "1";
  • интерфейс между сетевым носителем и сетевым устройством (передает электрические или оптические сигналы в кабель или радиоэфир, принимает их и преобразует в биты данных);
  • функции физического уровня реализуются во всех устройствах, подключенных к сети;
  • оборудование, работающее на физическом уровне: концентраторы;
  • Примеры сетевых интерфейсов, относящихся к физическому уровню: RS-232C, RJ-11, RJ-45, разъемы AUI, ВNС .

Функции канального уровня

  • нулевые и единичные биты Физического уровня организуются в кадры - "frame". Кадр является порцией данных, которая имеет независимое логическое значение;
  • организация доступа к среде передачи;
  • обработка ошибок передачи данных;
  • определяет структуру связей между узлами и способы их адресации;
  • оборудование, работающее на канальном уровне: коммутаторы, мосты;
  • примеры протоколов, относящихся к канальному уровню: Ethernet , Token Ring , FDDI, Bluetooth , Wi-Fi , Wi-Max, X.25, FrameRelay, ATM.

Для ЛВС канальный уровень разбивается на два подуровня:

  • LLC (LogicalLinkControl) –отвечает за установление канала связи и за безошибочную посылку и прием сообщений данных;
  • MAC (MediaAccessControl) – обеспечивает совместный доступ сетевых адаптеров к физическому уровню, определение границ кадров, распознавание адресов назначения (например, доступ к общей шине).

Функции сетевого уровня

  • Выполняет функции:
    • определения пути передачи данных;
    • определения кратчайшего маршрута;
    • отслеживания неполадок и заторов в сети.
  • Решает задачи:
    • передача сообщений по связям с нестандартной структурой;
    • согласование разных технологий;
    • упрощение адресации в крупных сетях;
    • создание барьеров на пути нежелательного трафика между сетями.
  • Оборудование, работающее на сетевом уровне: маршрутизатор.
  • Виды протоколов сетевого уровня:
    • сетевые протоколы (продвижение пакетов через сеть: , ICMP);
    • протоколы маршрутизации: RIP, OSPF;
    • протоколы разрешения адресов (ARP).

Функции транспортного уровня модели osi

  • обеспечивает приложениям (или прикладному и сеансовому уровням) передачу данных с требуемой степенью надежности, компенсирует недостатки надёжности более низких уровней;
  • мультиплексирование и демультиплексирование т.е. сбора и разборка пакетов;
  • протоколы предназначены для взаимодействия типа «точка-точка»;
  • начиная с данного уровня, протоколы реализуются программными средствами конечных узлов сети - компонентами их сетевых ОС;
  • примеры: протоколы TCP , UDP .

Функции сеансового уровня

  • поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время;
  • создание/завершение сеанса;
  • обмен информацией;
  • синхронизация задач;
  • определение права на передачу данных;
  • поддержанием сеанса в периоды неактивности приложений.
  • синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при сбоях.

Функции представительного уровня

  • отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям;
  • возможно осуществление:
  • сжатия/распаковки или кодирования/декодирования данных;
  • перенаправления запросов другому сетевому ресурсу, если они не могут быть обработаны локально.
  • пример: протокол SSL (обеспечивает секретных обмен сообщениями для протоколов прикладного уровня TCP/IP).

Функции прикладного уровня модели osi

  • является набором разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, организуют совместную работу;
  • обеспечивает взаимодействие сети и пользователя;
  • разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты;
  • отвечает за передачу служебной информации;
  • предоставляет приложениям информацию об ошибках;
  • пример: HTTP, POP3, SNMP, FTP.

Сетезависимые и сетенезависимые уровни семиуровневой модели osi

По своим функциональным возможностям семь уровней модели OSI можно отнести к одной из двух групп:

  • группа, в которой уровни зависят от конкретной технической реализации компьютерной сети. Физический, канальный и сетевой уровни - являются сетезависимыми, другими словами эти уровни неразрывно связаны с конкретным используемым сетевым оборудованием.
  • группа, в которой уровни в основном ориентированы на работу с приложениями. Сеансовый, представительный и прикладной уровни - ориентированы на используемые приложения и практически не зависят от того, какое именно сетевое оборудование используется в компьютерной сети, то есть сетенезависимые.

Сетевая модель OSI — это эталонная модель взаимодействия открытых систем, на английском звучит как Open Systems Interconnection Basic Reference Model. Ее назначение в обобщенном представлении средств сетевого взаимодействия.

То есть модель OSI — то обобщенные стандарты для разработчиков программ, благодаря которым любой компьютер одинаково может расшифровать данные, переданные с другого компьютера. Чтобы было понятно, приведу жизненный пример. Известно, что пчелы видят все окружающее их в утрафиалетовом свете. То есть одну и ту же картинку наш глаз и пчелиный воспринимает абсолютно по-разному и то, что видят насекомые, может быть незаметно для зрения человека.

То же самое и с компьютерами — если один разработчик пишет приложение на каком-либо программном языке, который понимает его собственный компьютер, но не доступен ни для одного другого, то на любом другом устройстве вы прочитать созданный этим приложением документ не сможете. Поэтому пришли к такой идее, чтобы при написании приложений следовать единому своду правил, понятному для всех.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.


Сетевой протокол — это правила и технические процедуры, позволяющие компьютерам, объединенным в сеть, осуществлять соединение и обмен данными.
Группа протоколов, объединенных единой конечной целью, называется стек протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.


Разберем их подробнее.

7. Прикладной уровень (Application Layer)

Его задача забрать у сетевого приложения данные и отправить на 6 уровень.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть >>IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Стеки протоколов

TCP/IP — это стек протоколов, который управляет передачей данных как в локальной сети, так и в глобальной сети Интернет. Данный стек содержит 4 уровня, то есть по эталонной модели OSI каждый из них объединяет в себе несколько уровней.

  1. Прикладной (по OSI — прикладной, представления и сеансовый)
    За данный уровень отвечают протоколы:
    • TELNET — удаленный сеанс связи в виде командной строки
    • FTP — протокол передачи файлов
    • SMTP — протокол пересылки почты
    • POP3 и IMAP — приема почтовых отправлений
    • HTTP — работы с гипертекстовыми документами
  2. Транспортный (по OSI то же самое) — это уже описанные выше TCP и UDP.
  3. Межсетевой (по OSI — сетевой) — это протокол IP
  4. Уровень сетевых интерфейсов (по OSI — канальный и физический)За работу этого уровня отвечают драйверы сетевых адаптеров.

Терминология при обозначении блока данных

  • Поток — те данные, которыми оперируются на прикладном уровне
  • Дейтаграмма — блок данных на выходе с UPD, то есть у которого нет гарантированной доставки.
  • Сегмент — гарантированный для доставки блок на выходе с протокола TCP
  • Пакет — блок данных на выходе с протокола IP. поскольку на данном уровне он еще не гарантирован к доставке, то тоже может называться дейтаграммой.
  • Кадр — блок с присвоенными MAC адресами.

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) . Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Взаимодействие уровней модели OSI

Модель OSI можно разделить на две различных модели, как показано на рис. 1.11:

Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Каждый уровень компьютера-отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера-получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

Рис. 1.11. Схема взаимодействия компьютеров в базовой эталонной модели OSI

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети.

При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 1.12, где Заг – заголовок пакета, Кон – конец пакета.

На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Рис. 1.12. Формирование пакета каждого уровня семиуровневой модели

Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

Отдельные уровни модели OSI удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы, необходимые для выполнения этой задачи.

Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни. На рис. 1.13 приведено краткое описание функций всех уровней.

Рис. 1.13. Функции уровней модели OSI

Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

Взаимодействию прикладных процессов;

Формам представления данных;

Единообразному хранению данных;

Управлению сетевыми ресурсами;

Безопасности данных и защите информации;

Диагностике программ и технических средств.

Прикладной уровень (Application layer)

Прикладной уровень обеспечивает прикладным процессам средства доступа к области взаимодействия, является верхним (седьмым) уровнем и непосредственно примыкает к прикладным процессам.

В действительности прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Специальные элементы прикладного сервиса обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например программе необходимо переслать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами FTAM (File Transfer, Access, and Management). В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере), посылает конкретные данные в виде Дейтаграммы на прикладной уровень. Одна из основных задач этого уровня – определить, как следует обрабатывать запрос прикладной программы, другими словами, какой вид должен принять данный запрос.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень выполняет следующие функции:

1. Выполнение различных видов работ.

Передача файлов;

Управление заданиями;

Управление системой и т. д;

2. Идентификация пользователей по их паролям, адресам, электронным подписям;

3. Определение функционирующих абонентов и возможности доступа к новым прикладным процессам;

4. Определение достаточности имеющихся ресурсов;

5. Организация запросов на соединение с другими прикладными процессами;

6. Передача заявок представительскому уровню на необходимые методы описания информации;

7. Выбор процедур планируемого диалога процессов;

8. Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов;

9. Определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок);

10. Соглашение об исправлении ошибок и определении достоверности данных;

11. Согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Указанные функции определяют виды сервиса, которые прикладной уровень предоставляет прикладным процессам. Кроме этого, прикладной уровень передает прикладным процессам сервис, предоставляемый физическим, канальным, сетевым, транспортным, сеансовым и представительским уровнями.

На прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское программное обеспечение.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних трех уровней относятся:

FTP (File Transfer Protocol) протокол передачи файлов;

TFTP (Trivial File Transfer Protocol) простейший протокол пересылки файлов;

X.400 электронная почта;

Telnet работа с удаленным терминалом;

SMTP (Simple Mail Transfer Protocol) простой протокол почтового обмена;

CMIP (Common Management Information Protocol) общий протокол управления информацией;

SLIP (Serial Line IP) IP для последовательных линий. Протокол последовательной посимвольной передачи данных;

SNMP (Simple Network Management Protocol) простой протокол сетевого управления;

FTAM (File Transfer, Access, and Management) протокол передачи, доступа и управления файлами.

Уровень представления данных (Presentation layer)

Функции данного уровня – представление данных, передаваемых между прикладными процессами, в нужной форме.

Этот уровень обеспечивает то, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. В случаях необходимости уровень представления в момент передачи информации выполняет преобразование форматов данных в некоторый общий формат представления, а в момент приема, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. Такая ситуация может возникнуть в ЛВС с неоднотипными компьютерами (IBM PC и Macintosh), которым необходимо обмениваться данными. Так, в полях баз данных информация должна быть представлена в виде букв и цифр, а зачастую и в виде графического изображения. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

В основу общего представления данных положена единая для всех уровней модели система ASN.1. Эта система служит для описания структуры файлов, а также позволяет решить проблему шифрования данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня.

Представительный уровень выполняет следующие основные функции:

1. Генерация запросов на установление сеансов взаимодействия прикладных процессов.

2. Согласование представления данных между прикладными процессами.

3. Реализация форм представления данных.

4. Представление графического материала (чертежей, рисунков, схем).

5. Засекречивание данных.

6. Передача запросов на прекращение сеансов.

Протоколы уровня представления данных обычно являются составной частью протоколов трех верхних уровней модели.

Сеансовый уровень (Session layer)

Сеансовый уровень – это уровень, определяющий процедуру проведения сеансов между пользователями или прикладными процессами.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того чтобы начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Сеансовый уровень управляет передачей информации между прикладными процессами, координирует прием, передачу и выдачу одного сеанса связи. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающими на разных рабочих станциях. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений во время сеанса и завершение сеанса.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Полудуплексной (процессы будут передавать и принимать данные по очереди);

Дуплексной (процессы будут передавать данные, и принимать их одновременно).

В полудуплексном режиме сеансовый уровень выдает тому процессу, который начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень разрешает передачу только той стороне, которая обладает маркером данных.

Сеансовый уровень обеспечивает выполнение следующих функций:

1. Установление и завершение на сеансовом уровне соединения между взаимодействующими системами.

2. Выполнение нормального и срочного обмена данными между прикладными процессами.

3. Управление взаимодействием прикладных процессов.

4. Синхронизация сеансовых соединений.

5. Извещение прикладных процессов об исключительных ситуациях.

6. Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки.

7. Прерывание в нужных случаях прикладного процесса и его корректное возобновление.

8. Прекращение сеанса без потери данных.

9. Передача особых сообщений о ходе проведения сеанса.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью протоколов трех верхних уровней модели.

Транспортный уровень (Transport Layer)

Транспортный уровень предназначен для передачи пакетов через коммуникационную сеть. На транспортном уровне пакеты разбиваются на блоки.

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням модели (прикладному и сеансовому) передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень определяет адресацию физических устройств (систем, их частей) в сети. Этот уровень гарантирует доставку блоков информации адресатам и управляет этой доставкой. Его главной задачей является обеспечение эффективных, удобных и надежных форм передачи информации между системами. Когда в процессе обработки находится более одного пакета, транспортный уровень контролирует очередность прохождения пакетов. Если проходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

В функции транспортного уровня входят:

1. Управление передачей по сети и обеспечение целостности блоков данных.

2. Обнаружение ошибок, частичная их ликвидация и сообщение о неисправленных ошибках.

3. Восстановление передачи после отказов и неисправностей.

4. Укрупнение или разделение блоков данных.

5. Предоставление приоритетов при передаче блоков (нормальная или срочная).

6. Подтверждение передачи.

7. Ликвидация блоков при тупиковых ситуациях в сети.

Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Наиболее распространенные протоколы транспортного уровня включают в себя:

TCP (Transmission Control Protocol) протокол управления передачей стека TCP/IP;

UDP (User Datagram Protocol) пользовательский протокол дейтаграмм стека TCP/IP;

NCP (NetWare Core Protocol) базовый протокол сетей NetWare;

SPX (Sequenced Packet eXchange) упорядоченный обмен пакетами стека Novell;

TP4 (Transmission Protocol) – протокол передачи класса 4.

Сетевой уровень (Network Layer)

Сетевой уровень обеспечивает прокладку каналов, соединяющих абонентские и административные системы через коммуникационную сеть, выбор маршрута наиболее быстрого и надежного пути.

Сетевой уровень устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними. Виртуальный или логический канал – это такое функционирование компонентов сети, которое создает взаимодействующим компонентам иллюзию прокладки между ними нужного тракта. Кроме этого, сетевой уровень сообщает транспортному уровню о появляющихся ошибках. Сообщения сетевого уровня принято называть пакетами (packet). В них помещаются фрагменты данных. Сетевой уровень отвечает за их адресацию и доставку.

Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз, выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, по которым проходит пакет.

Сетевой уровень отвечает за деление пользователей на группы и маршрутизацию пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Сетевой уровень выполняет функции:

1. Создание сетевых соединений и идентификация их портов.

2. Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть.

3. Управление потоками пакетов.

4. Организация (упорядочение) последовательностей пакетов.

5. Маршрутизация и коммутация.

6. Сегментирование и объединение пакетов.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Наиболее часто на сетевом уровне используются протоколы:

IP (Internet Protocol) протокол Internet, сетевой протокол стека TCP/IP, который предоставляет адресную и маршрутную информацию;

IPX (Internetwork Packet Exchange) протокол межсетевого обмена пакетами, предназначенный для адресации и маршрутизации пакетов в сетях Novell;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов (частично этот протокол реализован на уровне 2);

CLNP (Connection Less Network Protocol) сетевой протокол без организации соединений.

Канальный уровень (Data Link)

Единицей информации канального уровня являются кадры (frame). Кадры – это логически организованная структура, в которую можно помещать данные. Задача канального уровня – передавать кадры от сетевого уровня к физическому уровню.

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Задача канального уровня – брать пакеты, поступающие с сетевого уровня и готовить их к передаче, укладывая в кадр соответствующего размера. Этот уровень обязан определить, где начинается и где заканчивается блок, а также обнаруживать ошибки передачи.

На этом же уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются и исправляются (путем требований повторной передачи данных) ошибки.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.Х делят канальный уровень на два подуровня:

LLC (Logical Link Control) управление логическим каналом осуществляет логический контроль связи. Подуровень LLC обеспечивает обслуживание сетевого уровня и связан с передачей и приемом пользовательских сообщений.

MAC (Media Assess Control) контроль доступа к среде. Подуровень MAC регулирует доступ к разделяемой физической среде (передача маркера или обнаружение коллизий или столкновений) и управляет доступом к каналу связи. Подуровень LLC находится выше подуровня МАC.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу.

При больших размерах передаваемых блоков данных канальный уровень делит их на кадры и передает кадры в виде последовательностей.

При получении кадров уровень формирует из них переданные блоки данных. Размер блока данных зависит от способа передачи, качества канала, по которому он передается.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Канальный уровень может выполнять следующие виды функций:

1. Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.

2. Организация и передача кадров.

3. Обнаружение и исправление ошибок.

4. Управление потоками данных.

5. Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Наиболее часто используемые протоколы на канальном уровне включают:

HDLC (High Level Data Link Control) протокол управления каналом передачи данных высокого уровня, для последовательных соединений;

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x;

Ethernet сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей частоты и обнаружением конфликтов;

Token ring сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера;

FDDI (Fiber Distributed Date Interface Station) сетевая технология по стандарту IEEE 802.6, использующая оптоволоконный носитель;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов;

Frame relay сеть, организованная из технологий Х25 и ISDN.

Физический уровень (Physical Layer)

Физический уровень предназначен для сопряжения с физическими средствами соединения. Физические средства соединения – это совокупность физической среды, аппаратных и программных средств, обеспечивающая передачу сигналов между системами.

Физическая среда – это материальная субстанция, через которую осуществляется передача сигналов. Физическая среда является основой, на которой строятся физические средства соединения. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц.

Физический уровень состоит из Подуровня стыковки со средой и Подуровня преобразования передачи.

Первый из них обеспечивает сопряжение потока данных с используемым физическим каналом связи. Второй осуществляет преобразования, связанные с применяемыми протоколами. Физический уровень обеспечивает физический интерфейс с каналом передачи данных, а также описывает процедуры передачи сигналов в канал и получения их из канала. На этом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

Тип кабелей и разъемов;

Разводку контактов в разъемах;

Схему кодирования сигналов для значений 0 и 1.

Физический уровень выполняет следующие функции:

1. Установление и разъединение физических соединений.

2. Передача сигналов в последовательном коде и прием.

3. Прослушивание, в нужных случаях, каналов.

4. Идентификация каналов.

5. Оповещение о появлении неисправностей и отказов.

Оповещение о появлении неисправностей и отказов связано с тем, что на физическом уровне происходит обнаружение определенного класса событий, мешающих нормальной работе сети (столкновение кадров, посланных сразу несколькими системами, обрыв канала, отключение питания, потеря механического контакта и т.д.). Виды сервиса, предоставляемого канальному уровню, определяются протоколами физического уровня. Прослушивание канала необходимо в тех случаях, когда к одному каналу подключается группа систем, но одновременно передавать сигналы разрешается только одной из них. Поэтому прослушивание канала позволяет определить, свободен ли он для передачи. В ряде случаев для более четкого определения структуры физический уровень разбивается на несколько подуровней. Например, физический уровень беспроводной сети делится на три подуровня (рис. 1.14).

Рис. 1.14. Физический уровень беспроводной локальной сети

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Физический уровень может обеспечивать как асинхронную (последовательную) так и синхронную (параллельную) передачу, которая применяется для некоторых мэйнфреймов и мини-компьютеров. На Физическом уровне должна быть определена схема кодирования для представления двоичных значений с целью их передачи по каналу связи. Во многих локальных сетях используется манчестерское кодирование.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных и другие характеристики среды и электрических сигналов.

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 – механические/электрические характеристики несбалансированного последовательного интерфейса;

EIA-RS-422/449, CCITT V.10 – механические, электрические и оптические характеристики сбалансированного последовательного интерфейса;

Ethernet – сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов;

Token ring – сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера.

Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) - абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов.

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Несмотря на существование других моделей, большинство сетевых производителей сегодня разрабатывают свои продукты на основе этой структуры.

Уровни OSI

Каждый уровень модели OSI отвечает за часть процесса обработки по подготовке данных к передаче по сети.

Согласно модели OSI в процессе передачи данные буквально проходят сверху вниз по уровням модели OSI отправляющего компьютера и вверх по уровням модели OSI принимающего компьютера. На принимающем компьютере происходит процесс, обратный инкапсуляции. Биты прибывают на физический уровень модели OSI принимающего компьютера. В процессе перемещения вверх по уровням OSI принимающего компьютера данные поступят на прикладной уровень.

Уровень Название Описание 1 Описание 2
7. Прикладной Это уровень, с которым работают пользователи конечных продуктов. Их не волнует, как передаются данные, зачем и через какое место… Они сказали "ХОЧУ!" - а мы, программисты, должны им это обеспечить. В качестве примера можно взять на рассмотрение любую сетевую игру: для игрока она работает на этом уровне. Когда пользователь хочет отправить данные, например, электронную почту, на прикладном уровне начинается процесс инкапсуляции. Прикладной уровень отвечает за обеспечение сетевого доступа к приложениям. Информация проходит через верхние три уровня и, попадая вниз, на транспортный уровень, считается данными.
6. Представительский (Введение в XML , SMB) Здесь программист имеет дело с данными, полученными от низших уровней. В основном, это конвертирование и представление данных в удобоваримом для пользователя виде.
5. Сеансовый (TLS , SSL сертификаты для для сайта, почты , NetBios) Этот уровень позволяет пользователям осуществлять "сеансы связи". То есть именно на этом уровне передача пакетов становится для программиста прозрачной, и он может, не задумываясь о реализации, непосредственно передавать данные, как цельный поток. Здесь на сцену вступают протоколы HTTP, FTP , Telnet, SMTP и т.д.
4. Транспортный (Порты TCP , UDP) Осуществляет контроль над передачей данных (сетевых пакетов). То есть, проверяет их целостность при передаче, распределяет нагрузку и т.д. Этот уровень реализует такие протоколы, как TCP, UDP и т.д. Для нас представляет наибольший интерес. На транспортном уровне данные разбиваются на более легко управляемые сегменты, или блоки PDU транспортного уровня, для упорядоченной транспортировки по сети. Блок PDU описывает данные так, как они движутся с одного уровня модели OSI на другой. Кроме того, блок PDU транспортного уровня содержит такую информацию, как номера портов, порядковые номера и номера квитирования, которые используются для надежной транспортировки данных.
3. Сетевой (IP, ICMP протокол диагностики перегрузки сети) Логически контролирует адресацию в сети, маршрутизацию и т.д. Должен быть интересен разработчикам новых протоколов и стандартов. На этом уровне реализованы протоколы IP, IPX, IGMP, ICMP, ARP. В основном, управляется драйверами и операционными системами. Сюда влезать, конечно, стоит, но только когда ты знаешь, что делаешь, и полностью в себе уверен. На сетевом уровне каждый сегмент, поступивший с транспортного уровня, становится пакетом. Пакет содержит логическую адресацию и другие управляющие данные уровня 3.
2. Канальный (WI-FI , Что такое Ethernet) Этот уровень контролирует восприятие электронных сигналов логикой (радиоэлектронными элементами) аппаратных устройств. То есть, взаимодействуя на этом уровне, аппаратные средства превращают поток битов в электрические сигналы и наоборот. Нас он не интересует, потому что мы не разрабатываем аппаратные средства, чипы и т.д. Уровень касается сетевых карт, мостов, свичей, рутеров и т.д. На канальном уровне каждый пакет, поступивший с сетевого уровня, становится фреймом. Кадр содержит физический адрес и данные об исправлении ошибок.
1. Аппаратный (Физический) (лазер, электричество, радио) Контролирует передачи физических сигналов между аппаратными устройствами, входящими в сеть. То есть управляет передачей электронов по проводам. Нас он не интересует, потому что все, что находится на этом уровне, контролируется аппаратными средствами (реализация этого уровня - это задача производителей хабов, мультиплексоров, повторителей и другого оборудования). Мы не физики-радиолюбители, а геймдевелоперы. На физическом уровне фрейм становится битами. По сетевой среде биты передаются по одному.

Мы видим, что, чем выше уровень - тем выше степень абстракции от передачи данных, к работе с самими данными. Это и есть смысл всей модели OSI: поднимаясь все выше и выше по ступенькам ее лестницы, мы все меньше и меньше заботимся о том, как данные передаются, мы все больше и больше становимся заинтересованными в самих данных, нежели в средствах для их передачи. Нас, как программистов, интересуют уровни 3, 4 и 5. Мы должны использовать средства, которые они предоставляют, для того чтобы построить 6 и 7 уровни, с которыми смогут работать конечные пользователи.

Сетевой уровень

На сетевом уровне OSI реализованы протоколы IP(Структура межсетевого протокола IPv4 ,IPv6), IPX, IGMP, ICMP, ARP.

Нужно понимать почему возникла необходимость к построению сетевого уровня, почему сети построенные с помощью средств канального и физического уровня не смогли удовлетворять требования пользователей.

Создать сложную, структурированную сеть с интеграцией различных базовых сетевых технологий, можно и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Естественно в целом трафик в такой сети складывается случайным образом, но с другой стороны он характеризуется и некоторыми закономерностями. Как правило, в такой сети некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда им необходим доступ к ресурсам компьютеров другого отдела. Поэтому в зависимости от сетевого трафика компьютеры в сети разделяют на группы, которые называют сегменты сети. Компьютеры объединяются в группу, если большая часть их сообщений предназначена (адресована) компьютерам этой же группы. Разделение сети на сегменты, могут осуществлять мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Таким образом, одна сеть распадается на отдельные подсети. Из этих подсетей в дальнейшем могут быть построены составные сети достаточно крупных размеров.

Идея разбиения на подсети - это основа построения составных сетей.

Сеть называется составной (internetwork или internet), если она может быть представлена в виде совокупности нескольких сетей. Сети, входящие в составную сеть, называются подсетями (subnet), составляющими сетями или просто сетями, каждая из которых может работать на основе собственной технологии канального уровня (хотя это и не обязательно).

Но, воплощение этой идеи в жизнь с помощью повторителей, мостов, и коммутаторов имеет очень существенные ограничения и недостатки.

    В топологии сети построенной как с помощью повторителей, так и мостов или коммутаторов, должны отсутствовать петли. Действительно, мост или коммутатор может решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. Хотя в то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет образования резервных путей.

    Логические сегменты сети, расположенные между мостами или коммутаторами, слабо изолированы друг от друга. Они не защищены от широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Администратор должен вручную ограничивать количество широковещательных пакетов, которое разрешается генерировать некоторому узлу в единицу времени. В принципе некоторым образом удалось ликвидировать проблему широковещательных штормов с использованием механизма виртуальных сетей(Настройка VLAN Debian D-Link), реализованного во многих коммутаторах. Но в этом случае, хотя и возможно достаточно гибко создавать изолированные по трафику группы станций, но при этом они изолированы полностью, то есть узлы одной виртуальной сети не могут взаимодействовать с узлами другой виртуальной сети.

    В сетях, построенных на основе мостов и коммутаторов, достаточно сложно решается задача управления трафиком на основе значения данных, содержащихся в пакете. В таких сетях это возможно только с помощью пользовательских фильтров, для задания которых администратору приходится иметь дело с двоичным представлением содержимого пакетов.

    Реализация транспортной подсистемы только средствами физического и канального уровней, к которым относятся мосты и коммутаторы, приводит к недостаточно гибкой, одноуровневой системе адресации: в качестве адреса станции получателя используется MAC -адрес - адрес, который жестко связан с сетевым адаптером.

Все приведенные недостатки мостов и коммутаторов связаны только с тем, что они работают по протоколам канального уровня. Все дело в том, что эти протоколы в явном виде не определяют понятие часть сети (или подсеть, или сегмент), которое можно было бы использовать при структуризации большой сети. Поэтому разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.



Понравилась статья? Поделиться с друзьями: