Сущность и структура баз данных. Реляционные базы данных

Модель данных - совокупность структур данных и операций по их обработке. С помощью модели данных можно наглядно представить структуру объектов и установленные меж­ду ними связи. Для терминологии моделей данных характерны понятия «эле­мент данных» и «правила связывания». Элемент данных описывает любой на­бор данных, а правила связывания определяют алгоритмы взаимосвязи элементов данных. К настоящему времени разработано множество различных моделей дан­ных, но на практике используется три основных. Выделяют иерархическую, сетевую и реляционную модели данных. Соответственно говорят об иерархичес­ких, сетевых и реляционных СУБД.

О Иерархическая модель данных. Иерархически организованные данные встре­чаются в повседневной жизни очень часто. Например, структура высшего учеб­ного заведения - это многоуровневая иерархическая структура. Иерархичес­кая (древовидная) БД состоит из упорядоченного набора элементов. В этой модели исходные элементы порождают другие элементы, причем эти элементы в свою очередь порождают следующие элементы. Каждый порожденный эле­мент имеет только один порождающий элемент.

Организационные структуры, списки материалов, оглавление в книгах, пла­ны проектов и многие другие совокупности данных могут быть представле­ны в иерархическом виде. Автоматически поддерживается целостность ссы­лок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.

Основным недостатком данной модели является необходимость использова­ния той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных (а часто невозможность этой реорганизации) привели к созданию более общей модели - сетевой.

О Сетевая модель данных. Сетевой подход к организации данных является рас­ширением иерархического подхода. Данная модель отличается от иерахической тем, что каждый порожденный элемент может иметь более одного по­рождающего элемента. ■

Поскольку сетевая БД может представлять непосредственно все виды связей, присущих данным соответствующей организации, по этим данным можно переме­щаться, исследовать и запрашивать их всевозможными способами, то есть сете­вая модель не связана всего лишь одной иерархией. Однако для того чтобы со­ставить запрос к сетевой БД, необходимо достаточно глубоко вникнуть в ее структуру (иметь под рукой схему этой БД) и выработать механизм навигации по базе данных, что является существенным недостатком этой модели БД.

О Реляционная модель данных. Основная идея реляционной модели данных за­ключается в том, чтобы представить любой набор данных в виде двумерной таблицы. В простейшем случае реляционная модель описывает единственную двумерную таблицу, но чаще всего эта модель описывает структуру и взаи­моотношения между несколькими различными таблицами.

Реляционная модель данных

Итак, целью информационной системы является обработка данных об объектах реального мира, с учетом связей между объектами. В теории БД данные часто называют атрибутами, а объекты - сущностями. Объект, атрибут и связь - фундаментальные понятия И.С.

Объект (или сущность) - это нечто существующее и различимое, то есть объектом можно назвать то «нечто», для которого существуют название и спо­соб отличать один подобный объект от другого. Например, каждая школа - это объект. Объектами являются также человек, класс в школе, фирма, сплав, хи­мическое соединение и т. д. Объектами могут быть не только материальные пред­меты, но и более абстрактные понятия, отражающие реальный мир. Например, события, регионы, произведения искусства; книги (не как полиграфическая про­дукция, а как произведения), театральные постановки, кинофильмы; правовые нормы, философские теории и проч.

Атрибут (или данное) - это некоторый показатель, который характеризует некий объект и принимает для конкретного экземпляра объекта некоторое чис­ловое, текстовое или иное значение. Информационная система оперирует на­борами объектов, спроектированными применительно к данной предметной области, используя при этом конкретные значения атрибутов (данных) тех или иных объектах. Например, возьмем в качестве набора объектов классы в школе. Число учеников в классе - это данное, которое принимает числовое значение (у одного класса 28, у другого- 32). Название класса - это данное, принимающее текстовое значение (у одного - 10А, у другого - 9Б и т. д.).

Развитие реляционных баз данных началось в конце 60-х годов, когда по­явились первые работы, в которых обсуждались; возможности использования при проектировании баз данных привычных и естественных способов представле­ния данных - так называемых табличных даталогических моделей.

Основоположником теории реляционных баз данных считается сотрудник фирмы IBM доктор Э. Кодд, опубликовавший 6 (июня 1970 г. статью A Relational Model of Data for Large-Shared Data Banks (Реляционная модель данных для больших коллективных банков данных). В этой статье впервые был использован термин «реляционная модель данных. Теория реляционных баз данных, разработанная в 70-х годах в США докто­ром Э. Коддом, имеет под собой мощную математическую основу, описывающую правила эффективной организации данных. Разработанная Э. Коддом теорети­ческая база стала основой для разработки теории проектирования баз данных.

Э. Кодд, будучи математиком по образованию, предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, раз­ность, декартово произведение). Он доказал, что любой набор данных можно представить в виде двумерных таблиц особого вида, известных в математике как «отношения».

Реляционной считается такая база данных, в которой все данные представле­ны для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами.

Таблица состоит из столбцов (полей) и строк (записей); имеет имя, уникаль­ное внутри базы данных. Таблица отражает тип объекта реального мира (сущ­ность), а каждая ее строка- конкретный объект. Каждый столбец таблицы - это совокупность значений конк­ретного атрибута объекта. Значения выбираются из множества всех возможных значений атрибута объек­та, которое называется доменом (domain) .

В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементам данных. Если при вычислении логическо­го условия относительно элемента данных в результате получено значение «исти­на», то этот элемент принадлежит домену. В простейшем случае домен определяется как допустимое потенциальное множество значений одного типа. Например, со­вокупность дат рождения всех сотрудников составляет «домен дат рождения», а имена всех сотрудников составляют «домен имен сотрудников». Домен дат рож­дения имеет тип данных, позволяющий хранить информацию о моментах време­ни, а домен имен сотрудников должен иметь символьный тип данных.

Если два значения берутся из одного и того же домена, то можно выполнять сравнение этих двух значений. Например, если два значения взяты из домена дат рождения, то можно сравнить их и определить, кто из сотрудников старше. Если же значения берутся из разных доменов, то их сравнение не допускается, так как, по всей вероятности, оно не имеет смысла. Например, из сравнения имени и даты рождения сотрудника ничего определенного не выйдет.

Каждый столбец (поле) имеет имя, которое обычно записывается в верхней части таблицы. При проектировании таблиц в рамках конкретной СУБД имеет­ся возможность выбрать для каждого поля его тип, то есть определить набор правил по его отображению, а также определить те операции, которые можно выполнять над данными, хранящимися в этом поле. Наборы типов могут разли­чаться у разных СУБД.

Имя поля должно быть уникальным в таблице, однако различные таблицы могут иметь поля с одинаковыми именами. Любая таблица должна иметь, по крайней мере, одно поле; поля расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от полей, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует «первой», «второй», «последней». Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key) . Часто вводят искусственное поле, предназначенное для нумерации за­писей в таблице. Таким полем, например, может быть его порядковый, который сможет обеспечить уникальность каж­дой записи в таблице. Ключ должен обладать следующими свойствами.

Уникальностью. В каждый момент времени никакие два различных кортежа отношения не имеют одинакового значения для комбинации входящих в ключ атрибутов. То есть в таблице не может быть двух строк, имеющих одинако­вый идентификационный номер или номер паспорта.

Минимальностью. Ни один из входящих в ключ атрибутов не может быть ис­ключен из ключа без нарушения уникальности. Это означает, что не стоит со­здавать ключ, включающий и номер паспорта, и идентификационный номер. Достаточно использовать любой из этих атрибутов, чтобы однозначно иденти­фицировать кортеж. Не стоит также включать в ключ неуникальный атрибут, то есть запрещается использование в качестве ключа комбинации идентифи­кационного номера и имени служащего. При исключении имени служащего из ключа все равно можно уникально идентифицировать каждую строку.

Каждое отношение имеет, по крайней мере, один возможный ключ, посколь­ку совокупность всех его атрибутов удовлетворяет условию уникальности - это следует из самого определения отношения.

Один из возможных ключей произвольно выбирается в качестве первичного ключа. Остальные возможные ключи, если они есть, принимаются за альтерна­тивные ключи. Например, если в качестве первичного ключа выбрать иденти­фикационный номер, то номер паспорта будет альтернативным ключом.

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key).

При описании модели реляционной базы данных для одного и того же поня­тия часто употребляют различные термины, что зависит от уровня описания (теория или практика) и системы (Access, SQL Server, dBase). В табл. 2.3 приве­дена сводная информация об используемых терминах.

Таблица 2.3. Терминология баз данных

Теория БД____________ Реляционные БД_________ SQL Server __________

Отношение (Relation) Таблица (Table) Таблица (Table)

Кортеж (Tuple) Запись (Record) Строка (Row)

Атрибут (Attribute)Поле (Field)_______________ Столбец или колонка (Column)

Реляционные базы данных

Реляционная база данных - это совокупность отношений, содержащих всю ин­формацию, которая должна храниться в базе данных. То есть база данных пред­ставляет набор таблиц, необходимых для хранения всех данных. Таблицы реля­ционной базы данных логически связаны между собой.Требования к проектированию реляционной базы данных в общем виде можно свести к нескольким правилам.

О Каждая таблица имеет уникальное в базе данных имя и состоит из однотипных строк.

О Каждая таблица состоит из фиксированного числа столбцов и значений. В одном столбце строки не может быть сохранено более одного значения. Например, если есть таблица с информацией об авторе, дате издания, тираже и т. д., то в столбце с именем автора не может храниться более одной фамилии. Если книга написана двумя и более авторами, придется использовать дополнительные таблицы.

О Ни в какой момент времени в таблице не найдется двух строк, дублирующих друг друга. Строки должны отличаться хотя бы одним значением, чтобы была возможность однозначно идентифицировать любую строку таблицы.

О Каждому столбцу присваивается уникальное в пределах таблицы имя; для него устанавливается конкретный тип данных, чтобы в этом столбце размещались однородные значения (даты, фамилии, телефоны, денежные суммы и т. д.).

О Полное информационное содержание базы данных представляется в виде яв­ных значений самих данных, и такой метод представления является единствен­ным. Например, связь между таблицами осуществляется на основе хранимых в соответствующих столбцах данных, а не на основе каких-либо указателей, искусственно определяющих связи.

О При обработке данных можно свободно обращаться к любой строке или лю­бому столбцу таблицы. Значения, хранимые в таблице, не накладывают ни­каких ограничений на очередность обращения к данным. Описание столбцов,

РЕЛЯЦИОННАЯ БАЗА ДАННЫХ И ЕЕ ОСОБЕННОСТИ. ВИДЫ СВЯЗЕЙ МЕЖДУ РЕЛЯЦИОННЫМИ ТАБЛИЦАМИ

Реляционная база данных - это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов - атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру - они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.

В реляционной базе данных каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.

Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений - это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.

Пусть создана таблица Студент, содержащая следу-рэщие поля: № группы, ФИО, № зачетки, дата рождения, шазвание специальности, название факультета. Такая организация хранения информации будет иметь ряд недостатков:

  • дублирование информации (наименование специальности и факультета повторяются для каждого студента), следовательно, увеличится объем БД;
  • процедура обновления информации в таблице затрудняется из-за необходимости редактирования каждой записи таблицы.

Нормализация таблиц предназначена для устранения этих недостатков. Имеется три нормальные формы отношений .

Первая нормальная форма. Реляционная таблица приведена к первой нормальной форме тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Так, если из таблицы Студент требуется получать сведения по имени студента, то поле ФИО следует разбить на части Фамилия, Имя, Отчество.

Вторая нормальная форма . Реляционная таблица задана во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Чтобы привести таблицу ко второй нормальной форме, необходимо определить функциональную зависимость полей. Функциональная зависимость полей - это зависимость, при крторой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Третья нормальная форма. Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы, ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Например, в таблице Студент (№ группы, ФИО, № зачетной книжки, Дата рождения, Староста) три поля - № зачетной книжки, № группы, Староста находятся в транзитивной зависимости. № группы зависит от № зачетной книжки, а Староста зависит от № группы. Для устранения транзитивной зависимости необходимо часть полей таблицы Студент перенести в другую таблицу Группа. Таблицы примут следующий вид: Студент (№ группы, ФИО, № зачетной книжки, Дата рождения), Группа (№ группы, Староста).

Над реляционными таблицами возможны следующие операции:

  • Объединение таблиц с одинаковой структурой. Результат- общая таблица: сначала первая, затем вторая (конкатенация).
  • Пересечение таблиц с одинаковой структурой. Результат - выбираются те записи, которые находятся в обеих таблицах.
  • Вычитание таблиц с одинаковой структурой. Результат - выбираются те записи, которых нет в вычитаемом.
  • Выборка (горизонтальное подмножество). Результат - выбираются записи, отвечающие определенным условиям.
  • Проекция (вертикальное подмножество). Результат - отношение, содержащее часть полей из исходных таблиц.
  • Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.

Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.

Существуют следующие типы информационных связей:

  • один-к-одному;
  • один-ко-многим;
  • многие-ко-многим.

Связь один-к-одному предполагает, что одному атрибуту первой таблицы соответствует только один атрибут второй таблицы и наоборот.

Связь один-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы.

Связь многие-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы и наоборот.

  • Перевод
Примечание переводчика: хоть статья довольно старая (опубликована 2 года назад) и носит громкое название, в ней все же дается хорошее представление о различиях реляционных БД и NoSQL БД, их преимуществах и недостатках, а также приводится краткий обзор нереляционных хранилищ.

В последнее время появилось много нереляционных баз данных. Это говорит о том, что если вам нужна практически неограниченная масштабируемость по требованию, вам нужна нереляционная БД.

Если это правда, значит ли это, что могучие реляционные БД стали уязвимы? Значит ли это, что дни реляционных БД проходят и скоро совсем пройдут? В этой статье мы рассмотрим популярное течение нереляционных баз данных применительно к различным ситуациям и посмотрим, повлияет ли это на будущее реляционных БД.

Реляционные базы данных существуют уже около 30 лет. За это время вспыхивало несколько революций, которые должны были положить конец реляционным хранилищам. Конечно, ни одна из этих революций не состоялась, и одна из них ни на йоту не поколебала позиции реляционных БД.

Начнем с основ

Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами. Нормализация - это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных.


Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее.

Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.

Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри. Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу.

Проблемы реляционных БД

Хотя реляционные хранилища и обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости, их показатели по каждому из этих пунктов не обязательно выше, чем у аналогичных систем, ориентированных на какую-то одну особенность. Это не являлось большой проблемой, поскольку всеобщее доминирование реляционных СУБД перевешивало какие-либо недочеты. Тем не менее, если обычные РБД не отвечали потребностям, всегда существовали альтернативы.

Сегодня ситуация немного другая. Разнообразие приложений растет, а с ним растет и важность перечисленных особенностей. И с ростом количества баз данных, одна особенность начинает затмевать все другие. Это масштабируемость. Поскольку все больше приложений работают в условиях высокой нагрузки, например, таких как веб-сервисы, их требования к масштабируемости могут очень быстро меняться и сильно расти. Первую проблему может быть очень сложно разрешить, если у вас есть реляционная БД, расположенная на собственном сервере. Предположим, нагрузка на сервер за ночь увеличилась втрое. Как быстро вы сможете проапгрейдить железо? Решение второй проблемы также вызывает трудности в случае использования реляционных БД.

Реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере. Когда ресурсы этого сервера закончатся, вам необходимо будет добавить больше машин и распределить нагрузку между ними. И вот тут сложность реляционных БД начинает играть против масштабируемости. Если вы попробуете увеличить количество серверов не до нескольких штук, а до сотни или тысячи, сложность возрастет на порядок, и характеристики, которые делают реляционные БД такими привлекательными, стремительно снижают к нулю шансы использовать их в качестве платформы для больших распределенных систем.

Чтобы оставаться конкурентоспособными, вендорам облачных сервисов приходится как-то бороться с этим ограничением, потому что какая ж это облачная платформа без масштабируемого хранилища данных. Поэтому у вендоров остается только один вариант, если они хотят предоставлять пользователям масштабируемое место для хранения данных. Нужно применять другие типы баз данных, которые обладают более высокой способностью к масштабированию, пусть и ценой других возможностей, доступных в реляционных БД.

Эти преимущества, а также существующий спрос на них, привел к волне новых систем управления базами данных.

Новая волна

Такой тип баз данных принято называть хранилище типа ключ-значение (key-value store). Фактически, никакого официального названия не существует, поэтому вы можете встретить его в контексте документо-ориентированных, атрибутно-ориентированных, распределенных баз данных (хотя они также могут быть реляционными), шардированных упорядоченных массивов (sharded sorted arrays), распределенных хэш-таблиц и хранилищ типа ключ-значения. И хотя каждое из этих названий указывает на конкретные особенности системы, все они являются вариациями на тему, которую мы будем назвать хранилище типа ключ-значение.

Впрочем, как бы вы его не называли, этот «новый» тип баз данных не такой уж новый и всегда применялся в основном для приложений, для которых использование реляционных БД было бы непригодно. Однако без потребности веба и «облака» в масштабируемости, эти системы оставались не сильно востребованными. Теперь же задача состоит в том, чтобы определить, какой тип хранилища больше подходит для конкретной системы.
Реляционные БД и хранилища типа ключ-значение отличаются коренным образом и предназначены для решения разных задач. Сравнение характеристик позволит всего лишь понять разницу между ними, однако начнем с этого:

Характеристики хранилищ

Реляционная БД Хранилище типа ключ-значение
База данных состоит из таблиц, таблицы содержат колонки и строки, а строки состоят из значений колонок. Все строки одной таблицы имеют единую структуру.
Для доменов можно провести аналогию с таблицами, однако в отличие от таблиц для доменов не определяется структура данных. Домен – это такая коробка, в которую вы можете складывать все что угодно. Записи внутри одного домена могут иметь разную структуру.
Модель данных 1 определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных.
Записи идентифицируются по ключу, при этом каждая запись имеет динамический набор атрибутов, связанных с ней.
Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения.
В некоторых реализация атрибуты могут быть только строковыми. В других реализациях атрибуты имеют простые типы данных, которые отражают типы, использующиеся в программировании: целые числа, массива строк и списки.
Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц.
Между доменами, также как и внутри одного домена, отношения явно не определены.

Никаких join’ов

Хранилища типа ключ-значение ориентированы на работу с записями. Это значит, что вся информация, относящаяся к данной записи, хранится вместе с ней. Домен (о котором вы можете думать как о таблице) может содержать бессчетное количество различных записей. Например, домен может содержать информацию о клиентах и о заказах. Это означает, что данные, как правило, дублируются между разными доменами. Это приемлемый подход, поскольку дисковое пространство дешево. Главное, что он позволяет все связанные данные хранить в одном месте, что улучшает масштабируемость, поскольку исчезает необходимость соединять данные из различных таблиц. При использовании реляционной БД, потребовалось бы использовать соединения, чтобы сгруппировать в одном месте нужную информацию.


Хотя для хранения пар ключ-значение потребность в отношения резко падает, отношения все же нужны. Такие отношения обычно существуют между основными сущностями. Например, система заказов имела бы записи, которые содержат данные о покупателях, товарах и заказах. При этом неважно, находятся ли эти данные в одном домене или в нескольких. Суть в том, что когда покупатель размещает заказ, вам скорее всего не захочется хранить информацию о покупателе и о заказе в одной записи.
Вместо этого, запись о заказе должна содержать ключи, которые указывают на соответствующие записи о покупателе и товаре. Поскольку в записях можно хранить любую информацию, а отношения не определены в самой модели данных, система управления базой данных не сможет проконтролировать целостность отношений. Это значит, что вы можете удалять покупателей и товары, которые они заказывали. Обеспечение целостности данных целиком ложится на приложение.

Доступ к данным

Реляционная БД Хранилище типа ключ-значение
Данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL).
Данные создаются, обновляются, удаляются и запрашиваются с использованием вызова API методов.
SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц, используя при этом соединения (join’ы).
Некоторые реализации предоставляют SQL-подобный синтаксис для задания условий фильтрации.
SQL-запросы могут включать агрегации и сложные фильтры.
Зачастую можно использовать только базовые операторы сравнений (=, !=, <, >, <= и =>).
Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Вся бизнес-логика и логика для поддержки целостности данных содержится в коде приложений.

Взаимодействие с приложениями

Хранилища типа ключ-значение: преимущества

Есть два четких преимущества таких систем перед реляционными хранилищами.
Подходят для облачных сервисов
Первое преимущество хранилищ типа ключ-значение состоит в том, что они проще, а значит обладают большей масштабируемостью, чем реляционные БД. Если вы размещаете вместе собственную систему, и планируете разместить дюжину или сотню серверов, которым потребуется справляться с возрастающей нагрузкой, за вашим хранилищем данных, тогда ваш выбор – хранилища типа ключ-значение.

Благодаря тому, что такие хранилища легко и динамически расширяются, они также пригодятся вендорам, которые предоставляют многопользовательскую веб-платформу хранения данных. Такая база представляет относительно дешевое средство хранения данных с большим потенциалом к масштабируемости. Пользователи обычно платят только за то, что они используют, однако их потребности могут вырасти. Вендор сможет динамически и практически без ограничений увеличить размер платформы, исходя из нагрузки.

Более естественная интеграция с кодом
Реляционная модель данных и объектная модель кода обычно строятся по-разному, что ведет к некоторой несовместимости. Разработчики решают эту проблему при помощи написания кода, который отображает реляционную модель в объектную модель. Этот процесс не имеет четкой и быстро достижимой ценности и может занять довольно значительное время, которое могло быть потрачено на разработку самого приложения. Тем временем многие хранилища типа ключ-значение хранят данные в такой структуре, которая отображается в объекты более естественно. Это может существенно уменьшить время разработки.

Другие аргументы в пользу использования хранилищ типа ключ-значение, наподобие «Реляционные базы могут стать неуклюжими» (кстати, я без понятия, что это значит), являются менее убедительными. Но прежде чем стать сторонником таких хранилищ, ознакомьтесь со следующим разделом.

Хранилища типа ключ-значение: недостатки

Ограничения в реляционных БД гарантируют целостность данных на самом низком уровне. Данные, которые не удовлетворяют ограничениям, физически не могут попасть в базу. В хранилищах типа ключ-значение таких ограничений нет, поэтому контроль целостности данных полностью лежит на приложениях. Однако в любом коде есть ошибки. Если ошибки в правильно спроектированной реляционной БД обычно не ведут к проблемам целостности данных, то ошибки в хранилищах типа ключ-значение обычно приводят к таким проблемам.

Другое преимущество реляционных БД заключается в том, что они вынуждают вас пройти через процесс разработки модели данных. Если вы хорошо спроектировали модель, то база данных будет содержать логическую структуру, которая полностью отражает структуру хранимых данных, однако расходится со структурой приложения. Таким образом, данные становятся независимы от приложения. Это значит, что другое приложение сможет использовать те же самые данные и логика приложения может быть изменена без каких-либо изменений в модели базы. Чтобы проделать то же самое с хранилищем типа ключ-значение, попробуйте заменить процесс проектирования реляционной модели проектированием классов, при котором создаются общие классы, основанные на естественной структуре данных.

И не забудьте о совместимости. В отличие от реляционных БД, хранилища, ориентированные на использование в «облаке», имеют гораздо меньше общих стандартов. Хоть концептуально они и не отличаются, они все имеют разные API, интерфейсы запросов и свою специфику. Поэтому вам лучше доверять вашему вендору, потому что в случае чего, вы не сможете легко переключиться на другого поставщика услуг. А учитывая тот факт, что почти все современные хранилища типа ключ-значение находятся в стадии бета-версий 2 , доверять становится еще рискованнее, чем в случае использования реляционных БД.

Ограниченная аналитика данных
Обычно все облачные хранилища строятся по типу множественной аренды , что означает, что одну и ту же систему использует большое количество пользователей и приложений. Чтобы предотвратить «захват» общей системы, вендоры обычно каким-то образом ограничивают выполнение запросов. Например, в SimpleDB запрос не может выполняться дольше 5 секунд. В Google AppEngine Datastore за один запрос нельзя получить больше, чем 1000 записей 3 .

Эти ограничения не страшны для простой логики (создание, обновление, удаление и извлечение небольшого количества записей). Но что если ваше приложение становится популярным? Вы получили много новых пользователей и много новых данных, и теперь хотите сделать новые возможности для пользователей или каким-то образом извлечь выгоду из данных. Тут вы можете жестко обломаться с выполнением даже простых запросов для анализа данных. Фичи наподобие отслеживания шаблонов использования приложения или системы рекомендаций, основанной на истории пользователя, в лучшем случае могут оказаться сложны в реализации. А в худшем - просто невозможны.

В таком случае для аналитики лучше сделать отдельную базу данных, которая будет заполняться данными из вашего хранилища типа ключ-значение. Продумайте заранее, каким образом это можно будет сделать. Будете ли вы размещать сервер в облаке или у себя? Не будет ли проблем из-за задержек сигнала между вами и вашим провайдером? Поддерживает ли ваше хранилище такой перенос данных? Если у вас 100 миллионов записей, а за один раз вы можете взять 1000 записей, сколько потребуется на перенос всех данных?

Однако не ставьте масштабируемость превыше всего. Она будет бесполезна, если ваши пользователи решат пользоваться услугами другого сервиса, потому что тот предоставляет больше возможностей и настроек.

Облачные хранилища

Множество поставщиков веб-сервисов предлагают многопользовательские хранилища типа ключ-значение. Большинство из них удовлетворяют критериям, перечисленным выше, однако каждое обладает своими отличительными фичами и отличается от стандартов, описанных выше. Давайте взглянем на конкретные пример хранилищ, такие как SimpleDB, Google AppEngine Datastore и SQL Data Services.
Amazon: SimpleDB
SimpleDB - это атрибутно-ориентированное хранилище типа ключ-значение, входящее в состав Amazon WebServices. SimpleDB находится в стадии бета-версии; пользователи могут пользовать ей бесплатно - до тех пор пока их потребности не превысят определенный предел.

У SimpleDB есть несколько ограничений. Первое - время выполнения запроса ограничено 5-ю секундами. Второе - нет никаких типов данных, кроме строк. Все хранится, извлекается и сравнивается как строка, поэтому для того, чтобы сравнить даты, вам нужно будет преобразовать их в формат ISO8601. Третье - максимальные размер любой строки составляет 1024 байта, что ограничивает размер текста (например, описание товара), который вы можете хранить в качестве атрибута. Однако поскольку структура данных гибкая, вы можете обойти это ограничения, добавляя атрибуты «ОписаниеТовара1», «Описание товара2» и т.д. Но количество атрибутов также ограничено - максимум 256 атрибутов. Пока SimpleDB находится в стадии бета-версии, размер домена ограничен 10-ю гигабайтами, а вся база не может занимать больше 1-го терабайта.

Одной из ключевых особенностей SimpleDB является использование модели (eventual consistency model). Эта модель подходит для многопоточной работы, однако следует иметь в виду, что после того, как вы изменили значение атрибута в какой-то записи, при последующих операциях чтения эти изменения могут быть не видны. Вероятность такого развития событий достаточно низкая, тем не менее, о ней нужно помнить. Вы же не хотите продать последний билет пяти покупателям только потому, что ваши данные были неконсистентны в момент продажи.

Google AppEngine Data Store
Google"s AppEngine Datastore построен на основе BigTable, внутренней системе хранения структурированных данных от Google. AppEngine Datastore не предоставляет прямой доступ к BigTable, но может восприниматься как упрощенный интерфейс взаимодействия с BigTable.

AppEngine Datastore поддерживает большее число типов данных внутри одной записи, нежели SimpleDB. Например, списки, которые могут содержать коллекции внутри записи.

Скорее всего вы будете использовать именно это хранилище данных при разработке с помощью Google AppEngine. Однако в отличии от SimpleDB, вы не сможете использовать AppEngine Datastore (или BigTable) вне веб-сервисов Google.

Microsoft: SQL Data Services

SQL Data Services является частью платформы Microsoft Azure . SQL Data Services является бесплатной, находится в стадии бета-версии и имеет ограничения на размер базы. SQL Data Services представляет собой отдельное приложение - надстройку над множеством SQL серверов, которые и хранят данные. Эти хранилища могут быть реляционными, однако для вас SDS является хранилищем типа ключ-значение, как и описанные выше продукты.

Необлачные хранилища

Существует также ряд хранилищ, которыми вы можете воспользоваться вне облака, установив их у себя. Почти все эти проекты являются молодыми, находятся в стадии альфа- или бета-версии, и имеют открытый код. С открытыми исходниками вы, возможно, будете больше осведомлены о возможных проблемах и ограничениях, нежели в случае использования закрытых продуктов.
CouchDB
CouchDB - это свободно распространяемая документо-ориентированная БД с открытым исходным кодом. В качестве формата хранения данных используется JSON. CouchDB призвана заполнить пробел между документо-ориентированными и реляционными базами данных с помощью «представлений». Такие представления содержат данные из документов в виде, схожим с табличным, и позволяют строить индексы и выполнять запросы.

В настоящее время CouchDB не является по-настоящему распределенной БД. В ней есть функции репликации, позволяющие синхронизировать данные между серверами, однако это не та распределенность, которая нужна для построения высокомасштабируемого окружения. Однако разработчики CouchDB работают над этим.
Проект Voldemort
Проект Voldemort - это распределенная база данных типа ключ-значение, предназначенная для горизонтального масштабирования на большом количестве серверов. Он родилась в процессе разработки LinkedIn и использовалась для нескольких систем, имеющих высокие требования к масштабируемости. В проекте Voldemort также используется модель конечной консистенции.
Mongo

Mongo - это база данных, разрабатываемая в 10gen Гейром Магнуссоном и Дуайтом Меррименом (которого вы можете знать по DoubleClick). Как и CouchDB, Mongo - это документо-ориентированная база данных, хранящая данные в JSON формате. Однако Mongo скорее является объектной базой, нежели чистым хранилищем типа ключ-значение.
Drizzle

Drizzle представляет совсем другой подход к решению проблем, с которыми призваны бороться хранилища типа ключ-значение. Drizzle начинался как одна из веток MySQL 6.0. Позже разработчики удалили ряд функций (включая представления, триггеры, скомпилированные выражения, хранимые процедуры, кэш запросов, ACL, и часть типов данных), с целью создания более простой и быстрой СУБД. Тем не менее, Drizzle все еще можно использовать для хранения реляционных данных. Цель разработчиков - построить полуреляционную платформу, предназначенную для веб-приложений и облачных приложений, работающих на системах с 16-ю и более ядрами.

Решение

В конечном счете, есть четыре причины, по которым вы можете выбрать нереляционное хранилище типа ключ-значение для своего приложения:
  1. Ваши данные сильно документо-ориентированны, и больше подходят для модели данных ключ-значение, чем для реляционной модели.
  2. Ваша доменная модель сильно объектно-ориентированна, поэтому использования хранилища типа ключ-значение уменьшит размер дополнительного кода для преобразования данных.
  3. Хранилище данных дешево и легко интегрируется с веб-сервисами вашего вендора.
  4. Ваша главная проблема - высокая масштабируемость по запросу.
Однако принимая решение, помните об ограничениях конкретных БД и о рисках, которые вы встретите, пойдя по пути использования нереляционных БД.

Для всех остальных требований лучше выбрать старые добрые реляционные СУБД. Так обречены ли они? Конечно, нет. По крайней мере, пока.

1 - по моему мнению, здесь больше подходит термин «структура данных», однако оставил оригинальное data model.
2 - скорее всего, автор имел в виду, что по своим возможностям нереляционные БД уступают реляционным.
3 - возможно, данные уже устарели, статья датируется февралем 2009 года.

  • voldemort
  • drizzle
  • Добавить метки

    А также рассмотрел при помощи команды SET NAMES и файла конфигураций my.ini. Сегодня будет краткая и если можно так сказать теоретическая статья, посвященная вопросу — что такое базы данных и какие базы данных бывают .

    В этой статье я постараюсь изложить кратко какие виды и типы баз данных бывают и остановлюсь на некоторых из них более подробно. Мы поговорим о структуре иерархических баз данных , уделим внимание структуре сетевых баз данных , и более подробно остановимся на структуре реляционных базах данных , рассмотрим особенности реляционных баз данных . И в конце статьи немного затронем тему проектирования баз данных , естественно реляционных, так сервер MySQL это по сути математическая модель реляционных баз данных. Проектирование баз данных и типы данных, с которыми может работать MySQL сервер — это темы для последующих публикаций.

    База данных. Математические модели, структура, определение.

    Я хоть и не собираюсь на своем блоге подробно рассказывать про математические законы и теории описывающие реляционные базы данных, но принцип того, как они устроены я рассказать должен, если вас заинтересует данная тема, то вы всегда можете посетить специализированный математический ресурс или почитать соответствующую литературу, а можете всегда задать вопрос в комментариях к данной публикации, и я по мере своих возможностей постараюсь вам ответить. Как я уже говорил, тема данной статьи – реляционные базы данных . Я постараюсь ответить на вопрос, что такое реляционные базы данных простым и понятным языком. Затрону основные понятия, относящиеся к реляционным базам данных, терминологию, историю возникновения баз данных вообще и реляционных в частности.

    Виды и типы баз данных

    Как я уже говорил, видов и типов баз данных очень и очень много и описать их все в данной публикации я просто не смогу, но самые распространенные виды хранения информации или виды баз данных я постараюсь описать. Понятно, что база данных хранит в себе информацию о каких-то объектах, например, информацию о товаре в интернет-магазине. Любой товар в базе данных – это объект с какими-то определенными параметрами и свойствами. Перейдем к конкретным примерам.

    Иерархическая база данных, структура иерархических баз данных

    Иерархическая база данных – каждый объект при таком хранение информации представляется в виде определенной сущности, то есть, у этой сущности могут быть дочерние элементы, родительские элементы, а у тех дочерних могут быть еще дочерние элементы, но есть один объект, с которого все начинается. Получается своеобразное дерево. Примером иерархической базы данных может быть, или файловая система компьютера, пример с файловой системой компьютера я приводил, когда рассматривал структуру XML документа, в рубрике Заметки о XML.

    Следует сказать, что базы данных подобного вида оптимизированы под чтение информации , то есть, базы данных, имеющие иерархическую структуру умеют очень быстро выбирать, запрашиваемую информацию и отдавать ее пользователям. Но такая структура не позволяет столь же быстро перебирать информацию, тут можно привести пример из жизни, компьютер может легко работать с каким-либо конкретным файлом или папкой (которые, по сути являются объектами иерархической структуры) но проверка компьютера антивирусам осуществляется очень долго. Второй пример – реестр Windows.

    На рисунке вы можете увидеть структуру иерархической базы данных , в самом верху находится родитель или корневой элемент , ниже находятся дочерние элементы , элементы, находящиеся на одном уровне называются братьями , ну или соседними элементами. Соответственно чем ниже уровень элемента, тем вложенность этого элемента больше.

    Сетевая база данных, структура сетевых баз данных

    Сетевые базы данных , являются своеобразной модификацией иерархических баз данных . Если вы внимательно смотрели на рисунок выше, то наверное обратили внимание, что к каждому нижнему элементу идет только одна стрелочка от верхнего элемента. То есть у иерархических баз данных у каждого дочернего элемента может быть только один потомок. Сетевые базы данных отличаются от иерархических тем, что у дочернего элемента может быть несколько предков, то есть, элементов стоящих выше него. Для большей наглядности и понимания структуры сетевых баз данных обратите внимание на рисунок:

    Стоит заметить, что сетевые базы данных обладают примерно теми же характеристиками, что и иерархические базы данных. Но, в данной рубрике нас не сильно интересуют иерархические и сетевые базы данных, данная тема больше относится к формату XML , и возможно в рубрике посвященной языку расширяемой разметки, я постараюсь более подробно рассмотреть эту тему. А в рубрике посвященной MySQL нас интересуют реляционные базы данных , на которых мы и остановимся более подробно.

    Реляционные базы данных, структура реляционных баз данных

    Реляционные базы данных получили очень широкое распространение и многие пытаются писать огромные статьи, посвященные вопросу – почему реляционные базы данных получили такое широкое распространение , делают глубокомысленные выводы и замечания. Но на самом деле все очень просто – реляционные базы данных очень легко описываются в математике , то есть, под них очень хорошо написана математика.

    Был когда-то такой математик – Эдгар Франк Кодд , умерший в 2003 году, который в восьмидесятых годах очень подробно описал структуру реляционных баз данных математическим языком . А если есть хорошо написанная математика, то соответственно есть и программная реализация. Останавливаться на биографии Э.Ф. Кодда я не буду, для этого есть различные энциклопедии. Именно благодаря Кодду реляционные базы данных стали активно развиваться. Поэтому-то, когда мы говорим базы данных, чаще всего мы подразумеваем именно реляционные базы данных .

    Особенности реляционных баз данных

    Главной особенностью реляционных баз данных является, то, что объекты внутри таких баз данных хранятся в виде набора двумерных таблиц . То есть, таблица состоит из набора столбцов, в котором может указываться: название, тип данных(дата, число, строка, текст и т.д.). Еще одной важной особенность реляционных БД является, то, что число столбцов фиксировано, то есть, структура базы данных известна заранее , а вот число строк или рядов в реляционных базах данных ничем не ограничено, если говорить грубо, то строки в реляционных базах данных и есть объекты , которые хранятся в базе данных.

    На самом деле, базы данных – это абстрактное понятие, таблица – это всего лишь способ хранения информации, набор таблиц может быть связан логически и этот набор называют база данных. Поэтому неправильно говорить, что MySQL это база данных, база данных – это хранящаяся информация. А вот такое понятие, как СУБД – система управления базами данных , это и есть MySQL сервер , именно при помощи него мы управляем хранящимися данными. Или иначе математических идей.

    Самой трудной задачей при работе с реляционными базами данных , является проектирование структуры баз данных . Проектирование структуры базы данных, заключается не только в том, чтобы создать таблицу и указать тип данных и наименование столбцов. На самом деле проектирование – это самый сложный этап при работе с базами данных . Потому что мощности ваших компьютеров ограничены. Пока данных мало, мало таблиц и строк в этих таблицах, машина будет их обрабатывать очень и очень быстро. Но, со временем количество информации будет увеличиваться, и мы получим замедление, которое будет увеличиваться, поскольку машине необходимо время на обработку тех или иных запросов(обработка информации). В прошлой статье я уже писал, что реляционные БД прежде всего ориентированы на модификацию(OLTP) , то есть, добавить новую запись в таблицу – это очень простая операция для реляционной СУБД , а вот сделать выборку данных, это уже трудоемкая операция. Также есть и изменение данных, это как бы промежуточное звено между чтением и добавлением. Хотя .

    Проектирование базы данных

    Ну что же, мы немного поговорили о достоинствах и недостатках реляционных баз данных . И теперь, вкратце, я затрону вопрос проектирования баз данных . Под проектированием я понимаю следующее: садится человек за стол, берет бумагу и ручку, и исходя из поставленной задачи, а также, исходя из достоинств и недостатков той или иной системы, в нашем случае СУБД MySQL начинает составлять структуру будущей базы данных. Требование к проектируемой базе данных обычно ставятся следующее:

    1. База данных должна быть как можно более компактна, то есть, неизыбыточна.
    2. База данных должна быть простой с точки зрения обработки.

    И как вы, наверное, поняли, данные требования противоречат друг другу. Проектирование — это самый важный аспект при работе с базами данных. Обычно, проектировщик – это опытный администратор сервера баз данных, либо архитектор баз данных, с большим опытом работы. В серьезных проектах может быть несколько десятков, а то и сотен таблиц, которые связаны между собой самыми замысловатыми способами связи. Конечно, я не собираюсь углубляться в проектирование баз данных , да и не смогу это сделать, но, кое какие основы проектирования баз данных я попытаюсь осветить на страницах своего блога. Прежде чем приступить к проектированию базы данных, нужно понять, а что мы вообще собираемся проектировать. То есть, должны понять, что у нас должно получиться на выходе.

    А на выходе мы должны получить так называемую диаграмму или как ее еще называют схема . Диаграмма – это определение: какая информация будет храниться, в какой таблице она будет храниться, в каком столбце какой тип данных, как называется таблица, сколько столбцов в таблице и их тип, как связаны между собой таблицы. Да, типы данных в столбцах могут быть разными, например, номер телефона или индекс можно записать, как с помощью символов, так и с помощью числового типа данных. Но появляется вопрос: какой тип данных лучше для хранения номера телефона или почтового индекса ? Чисто интуитивно на этот вопрос чаще всего отвечают правильно – номер телефона в базе данных должен иметь символьный тип, а вот объяснить, почему именно символьный тип могут немногие. Объяснение очень простое, например, нам потребовались все почтовые индексы, начинающиеся на 637 или номера телефонов начинающиеся на 952, так вот, сделать такую выборку из данных имеющих числовой тип задача довольно проблематичная, а сделать такую же выборку из данных символьного типа довольно легко.

    Реляционная база данных - основные понятия

    Часто, говоря о базе данных, имеют в виду просто некоторое автоматизированное хранилище данных. Такое представление не вполне корректно. Почему это так, будет показано ниже.

    Действительно, в узком смысле слова, база данных - это некоторый набор данных, необходимых для работы (актуальные данные). Однако данные - это абстракция; никто никогда не видел "просто данные"; они не возникают и не существуют сами по себе. Данные суть отражение объектов реального мира. Пусть, например, требуется хранить сведения о деталях, поступивших на склад. Как объект реального мира - деталь - будет отображена в базе данных? Для того, чтобы ответить на этот вопрос, необходимо знать, какие признаки или стороны детали будут актуальны, необходимы для работы. Среди них могут быть название детали, ее вес, размеры, цвет, дата изготовления, материал, из которого она сделана и т.д. В традиционной терминологии объекты реального мира, сведения о которых хранятся в базе данных, называются сущностями - entities (пусть это слово не пугает читателя - это общепринятый термин), а их актуальные признаки - атрибутами (attributes).

    Каждый признак конкретного объекта есть значение атрибута. Так, деталь "двигатель" имеет значение атрибута "вес", равное "50", что отражает тот факт, что данный двигатель весит 50 килограммов.

    Было бы ошибкой считать, что в базе данных отражаются только физические объекты. Она способна вобрать в себя сведения об абстракциях, процессах, явлениях - то есть обо всем, с чем сталкивается человек в своей деятельности. Так, например, в базе данных можно хранить информацию о заказах на поставку деталей на склад (хотя он - не физический объект, а процесс). Атрибутами сущности "заказ" будут название поставляемой детали, количество деталей, название поставщика, срок поставки и т.д.

    Объекты реального мира связаны друг с другом множеством сложных зависимостей, которые необходимо учитывать в информационной деятельности. Например, детали на склад поставляются их производителями. Следовательно, в число атрибутов детали необходимо включить атрибут "название фирмы-производителя". Однако этого недостаточно, так как могут понадобиться дополнительные сведения о производителе конкретной детали - его адрес, номер телефона и т.д. Значит, база данных должна содержать не только информацию о деталях и заказах на поставку, но и сведения об их производителях. Более того, база данных должна отражать связи между деталями и производителями (каждая деталь выпускается конкретным производителем) и между заказами и деталями (каждый заказ оформляется на конкретную деталь). Отметим, что в базе данных нужно хранить только актуальные, значимые связи.

    Таким образом, в широком смысле слова база данных - это совокупность описаний объектов реального мира и связей между ними, актуальных для конкретной прикладной области. В дальнейшем мы будем исходить из этого определения, уточняя его по ходу изложения.

    Реляционная модель данных

    Итак, мы получили представление о том, что хранится в базе данных. Теперь необходимо понять, как сущности, атрибуты и связи отображаются на структуры данных. Это определяется моделью данных.

    Традиционно все СУБД классифицируются в зависимости от модели данных, которая лежит в их основе. Принято выделять иерархическую, сетевую и реляционную модели данных. Иногда к ним добавляют модель данных на основе инвертированных списков. Соответственно говорят об иерархических, сетевых, реляционных СУБД или о СУБД на базе инвертированных списков.

    По распространенности и популярности реляционные СУБД сегодня - вне конкуренции. Они стали фактическим промышленным стандартом, и поэтому отечественному пользователю придется столкнуться в своей практике именно с реляционной СУБД. Кратко рассмотрим реляционную модель данных, не вникая в ее детали.

    Она была разработана Коддом еще в 1969-70 годах на основе математической теории отношений и опирается на систему понятий, важнейшими из которых являются таблица, отношение, строка, столбец, первичный ключ, внешний ключ.

    Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами. Таблица состоит из строк и столбцов и имеет имя, уникальное внутри базы данных. Таблица отражает тип объекта реального мира (сущность), а каждая ее строка - конкретный объект. Так, таблица Деталь содержит сведения о всех деталях, хранящихся на складе, а ее строки являются наборами значений атрибутов конкретных деталей. Каждый столбец таблицы - это совокупность значений конкретного атрибута объекта. Так, столбец Материал представляет собой множество значений "Сталь", "Олово", "Цинк", "Никель" и т.д. В столбце Количество содержатся целые неотрицательные числа. Значения в столбце Вес - вещественные числа, равные весу детали в килограммах.

    Эти значения не появляются из воздуха. Они выбираются из множества всех возможных значений атрибута объекта, которое называется доменом (domain). Так, значения в столбце материал выбираются из множества имен всех возможных материалов - пластмасс, древесины, металлов и т.д. Следовательно, в столбце Материал принципиально невозможно появление значения, которого нет в соответствующем домене, например, "вода" или "песок".

    Каждый столбец имеет имя, которое обычно записывается в верхней части таблицы (Рис. 1 ). Оно должно быть уникальным в таблице, однако различные таблицы могут иметь столбцы с одинаковыми именами. Любая таблица должна иметь по крайней мере один столбец; столбцы расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от столбцов, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

    Рисунок 1. Основные понятия базы данных.

    Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует "первой", "второй", "последней". Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key). В таблице Деталь первичный ключ - это столбец Номер детали. В нашем примере каждая деталь на складе имеет единственный номер, по которому из таблицы Деталь извлекается необходимая информация. Следовательно, в этой таблице первичный ключ - это столбец Номер детали. В этом столбце значения не могут дублироваться - в таблице Деталь не должно быть строк, имеющих одно и то же значение в столбце Номер детали. Если таблица удовлетворяет этому требованию, она называется отношением (relation).

    Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key). Рассмотрим пример, в котором база данных хранит информацию о рядовых служащих (таблица Служащий) и руководителях (таблица Руководитель) в некоторой организации (Рис. 2 ). Первичный ключ таблицы Руководитель - столбец Номер (например, табельный номер). Столбец Фамилия не может выполнять роль первичного ключа, так как в одной организации могут работать два руководителя с одинаковыми фамилиями. Любой служащий подчинен единственному руководителю, что должно быть отражено в базе данных. Таблица Служащий содержит столбец Номер руководителя, и значения в этом столбце выбираются из столбца Номер таблицы Руководитель (см. Рис. 2 ). Столбец Номер Руководителя является внешним ключом в таблице Служащий.

    Рисунок 2. Взаимосвязь таблиц базы данных.

    Таблицы невозможно хранить и обрабатывать, если в базе данных отсутствуют "данные о данных", например, описатели таблиц, столбцов и т.д. Их называют обычно метаданными. Метаданные также представлены в табличной форме и хранятся в словаре данных (data dictionary).

    Помимо таблиц, в базе данных могут храниться и другие объекты, такие как экранные формы, отчеты (reports), представления (views) и даже прикладные программы, работающие с базой данных.

    Для пользователей информационной системы недостаточно, чтобы база данных просто отражала объекты реального мира. Важно, чтобы такое отражение было однозначным и непротиворечивым. В этом случае говорят, что база данных удовлетворяет условию целостности (integrity).

    Для того, чтобы гарантировать корректность и взаимную непротиворечивость данных, на базу данных накладываются некоторые ограничения, которые называют ограничениями целостности (data integrity constraints).

    Существует несколько типов ограничений целостности. Требуется, например, чтобы значения в столбце таблицы выбирались только из соответствующего домена. На практике учитывают и более сложные ограничения целостности, например, целостность по ссылкам (referential integrity). Ее суть заключается в том, что внешний ключ не может быть указателем на несуществующую строку в таблице. Ограничения целостности реализуются с помощью специальных средств, о которых речь пойдет в Разд. Сервер базы данных .

    Язык SQL

    Сами по себе данные в компьютерной форме не представляют интерес для пользователя, если отсутствуют средства доступа к ним. Доступ к данным осуществляется в виде запросов к базе данных, которые формулируются на стандартном языке запросов. Сегодня для большинства СУБД таким языком является SQL.

    Появление и развития этого языка как средства описания доступа к базе данных связано с созданием теории реляционных баз данных. Прообраз языка SQL возник в 1970 году в рамках научно-исследовательского проекта System/R, работа над которым велась в лаборатории Санта-Тереза фирмы IBM. Ныне SQL - это стандарт интерфейса с реляционными СУБД. Популярность его настолько велика, что разработчики нереляционных СУБД (например, Adabas), снабжают свои системы SQL-интерейсом.

    Язык SQL имеет официальный стандарт - ANSI/ISO. Большинство разработчиков СУБД придерживаются этого стандарта, однако часто расширяют его для реализации новых возможностей обработки данных. Новые механизмы управления данными, которые будут описаны в Разд. Сервер базы данных , могут быть использованы только через специальные операторы SQL, в общем случае не включенные в стандарт языка.

    SQL не является языком программирования в традиционном представлении. На нем пишутся не программы, а запросы к базе данных. Поэтому SQL - декларативный язык. Это означает, что с его помощью можно сформулировать, что необходимо получить, но нельзя указать, как это следует сделать. В частности, в отличие от процедурных языков программирования (Си, Паскаль, Ада), в языке SQL отсутствуют такие операторы, как if-then-else, for, while и т.д.

    Мы не будем подробно рассматривать синтаксис языка. Коснемся его лишь в той мере, которая необходима для понимания простых примеров. С их помощью будут проиллюстрированы наиболее интересные механизмы обработки данных.

    Запрос на языке SQL состоит из одного или нескольких операторов, следующих один за другим и разделенных точкой с запятой. Ниже в таблице 1перечислены наиболее важные операторы, которые входят в стандарт ANSI/ISO SQL.

    Таблица 1. Основные операторы языка SQL.

    В запросах на языке SQL используются имена, которые однозначно идентифицируют объекты базы данных. В частности это - имя таблицы (Деталь), имя столбца (Название), а также имена других объектов в базе, которые относятся к дополнительным типам (например, имена процедур и правил), о которых речь пойдет в Разд. Сервер базы данных . Наряду с простыми, используются также сложные имена - например, квалификационное имя столбца (qualified column name) определяет имя столбца и имя таблицы, которой он принадлежит (Деталь.Вес). Для простоты в примерах имена будут записаны на русском языке, хотя на практике этого делать не рекомендуется.

    Каждый столбец в любой таблице хранит данные определенных типов. Различают базовые типы данных - строки символов фиксированной длины, целые и вещественные числа, и дополнительные типы данных - строки символов переменной длины, денежные единицы, дату и время, логические данные (два значения - "ИСТИНА" и "ЛОЖЬ"). В языке SQL можно использовать числовые, строковые, символьные константы и константы типа "дата" и "время".

    Рассмотрим несколько примеров.

    Запрос "определить количество деталей на складе для всех типов деталей" реализуется следующим образом:

    SELECT Название, Количество

    FROM Деталь;

    Результатом запроса будет таблица с двумя столбцами - Название и Количество, которые взяты из исходной таблицы Деталь. По сути, этот запрос позволяет получить вертикальную проекцию исходной таблицы (более строго, вертикальное подмножество множества строк таблицы). Из всех строк таблицы Деталь образуются строки, которые включают значения, взятые из двух столбцов - Название и Количество.

    Запрос "какие детали, изготовленные из стали, хранятся на складе?", сформулированный на языке SQL, выглядит так:

    FROM Деталь

    WHERE Материал = "Сталь";

    Результатом этого запроса также будет таблица, содержащая только те строки исходной таблицы, которые имеют в столбце Материал значение "Сталь". Этот запрос позволяет получить горизонтальную проекцию таблицы Деталь (звездочка в операторе SELECT означает выбор всех столбцов из таблицы).

    Запрос "определить название и количество деталей на складе, которые изготовлены из пластмассы и весят меньше пяти килограммов" будет записан следующим образом:

    SELECT Название, Количество

    FROM Деталь

    WHERE Материал = "Пластмасса"

    AND Вес < 5;

    Результат запроса - таблица из двух столбцов - Название, Количество, которая содержит название и число деталей, изготовленных из пластмассы и весящих менее 5 кг. По сути, операция выборки является операцией образования сначала горизонтальной проекции (найти все строки таблицы Деталь, у которых Материал = "Пластмасса" и Вес < 5), а затем вертикальной проекции (извлечь Название и Количество из выбранных ранее строк).

    Одним из средств, обеспечивающих быстрый доступ к таблицам, являются индексы. Индекс - это структура базы данных, представляющая собой указатель на конкретную строку таблицы. Индекс базы данных используется так же, как индексный указатель в книге. Он содержит значения, взятые из одного или нескольких столбцов конкретной строки таблицы, и ссылку на эту строку. Значения в индексе упорядочены, что позволяет СУБД выполнять быстрый поиск в таблице.

    Допустим, что сформулирован запрос к базе данных Склад:

    SELECT Название Количество, Материал

    FROM Деталь

    WHERE Номер = "Т145-А8";

    Если индексов для данной таблицы не существует, то для выполнения этого запроса СУБД должна просмотреть всю таблицу Деталь, последовательно выбирая из нее строки и проверяя для каждой из них условие выбора. Для больших таблиц такой запрос будет выполняться очень долго.

    Если же был предварительно создан индекс по столбцу Номер таблицы Деталь, то время поиска в таблице будет сокращено до минимума. Индекс будет содержать значения из столбца Номер и ссылку на строку с этим значением в таблице Деталь. При выполнении запроса СУБД вначале найдет в индексе значение "Т145-А8" (и сделает это быстро, так как индекс упорядочен, а его строки невелики), а затем по ссылке в индексе определит физическое расположение искомой строки.

    Индекс создается оператором SQL CREATE INDEX (СОЗДАТЬ ИНДЕКС). В данном примере оператор

    CREATE UNIQUE INDEX Индекс детали

    ON Деталь (Номер);

    позволит создать индекс с именем "Индекс детали" по столбцу Номер таблицы Деталь.

    Для пользователя СУБД интерес представляют не отдельные операторы языка SQL, а некоторая их последовательность, оформленная как единое целое и имеющая смысл с его точки зрения. Каждая такая последовательность операторов языка SQL реализует определенное действие над базой данных. Оно осуществляется за несколько шагов, на каждом из которых над таблицами базы данных выполняются некоторые операции. Так, в банковской системе перевод некоторой суммы с краткосрочного счета на долгосрочный выполняется в несколько операций. Среди них - снятие суммы с краткосрочного счета, зачисление на долгосрочный счет.

    Если в процессе выполнения этого действия произойдет сбой, например, когда первая операция будет выполнена, а вторая - нет, то деньги будут потеряны. Следовательно, любое действие над базой данных должно быть выполнено целиком, или не выполняться вовсе. Такое действие получило название транзакции.

    Обработка транзакций опирается на журнал, который используется для отката транзакций и восстановления состояния базы данных. Более подробно о транзакциях будет сказано в Разд. Обработка транзакций .

    Завершая обсуждение языка SQL, еще раз подчеркнем, что это - язык запросов. На нем нельзя написать сколько-нибудь сложную прикладную программу, которая работает с базой данных. Для этой цели в современных СУБД используется язык четвертого поколения (Forth Generation Language - 4GL), обладающий как основными возможностями процедурных языков третьего поколения (3GL), таких как Си, Паскаль, Ада, так и возможностью встроить в текст программы операторы SQL, а также средствами управления интерфейсом пользователя (меню, формами, вводом пользователя и т.д.). Сегодня язык 4GL - это один из фактических стандартов средств разработки приложений, работающих с базами данных.



    Понравилась статья? Поделиться с друзьями: