Метод частотного разделения каналов. Принцип временного разделения каналов

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс 1-го канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рис. приведены временные диаграммы, поясняющие принцип ВРК. На рис. а-в приведены графики трех непрерывных аналоговых сигналов u 1 (t), u 2 (t) и u 3 (t) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов в канале (линии) связи образуется групповой сигнал с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов.

Интервал времени между ближайшими импульсами группового сигнала T K называется канальным интервалом . Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи Т Ц. От соотношения Т Ц и T K зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

При временном разделении существуют взаимные помехи, в основном обусловленные двумя причинами.

Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Между каналами возникают взаимные переходные помехи или межсимвольная интерференция .

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения.

Принципы многоканальной передачи Используемые методы разделения каналов (РК) можно классифицировать на линейные и нелинейные (комбинационные). В большинстве случаев разделения каналов каждому источнику сообщения выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал (ГС). Если операция объединения линейна, то получившийся сигнал называют линейным групповым сигналом. За стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300… 3400 Гц, соответствующей основному спектру телефонного сигнала.

Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам. В свою очередь, часто используют «вторичное уплотнение» каналов ТЧ телеграфными каналами передачи данных. Обобщённая структурная схема системы многоканальной связи

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М, линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи. Иначе говоря, на приемной стороне должна быть предусмотрена аппаратура разделения.

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и другие.

Таким образом, на выходе четырёхполюсника наряду с частотами входных сигналов (ω, Ω) появились: постоянная составляющая вторые гармоники входных сигналов составляющие суммарной (ω + Ω) и разностной (ω – Ω) частот. (2ω, 2Ω); Информация будет иметь место и в сигналах с частотами (ωн + Ω) и (ωн – Ω), которые расположены зеркально по отношению к ω и называются верхней (ω + Ω) и нижней (ω – Ω) боковыми частотами. Если на модулятор подать сигнал несущей частоты U 1(t) = Um∙Cosωнt и сигнал тональной частоты в полосе Ωн … Ωв (где Ωн = 0. 3 к. Гц, Ωв = 3. 4 к. Гц), то спектр сигнала на выходе четырёхполюсника будет иметь вид:

Спектр сигнала на выходе четырехполюсника Полезными продуктами преобразования (модуляции) являются верхняя и нижняя боковые полосы. Для восстановления сигнала на приёме на вход демодулятора достаточно подать несущую частоту (ωн) и одну из боковых частот.

В МСП-ЧРК по каналу передаётся только сигнал одной боковой полосы, а несущая частота берётся от местного генератора. На выходе каждого канального модулятора включается полосовой фильтр с полосой пропускания ∆ω = Ωв – Ωн = 3. 1 к. Гц. С целью уменьшения влияния соседних каналов (переходных помех), обусловленного неидеальностью АЧХ фильтров, между спектрами сигнальных сообщений вводятся защитные интервалы. Для каналов ТЧ они равны 0. 9 к. Гц. Спектр группового сигнала с защитными интервалами

Принципы построения аппаратуры ЧРК В системах ЧРК с числом каналов 12 и более реализуется принцип многократного преобразования частоты Вначале каждый из каналов ТЧ «привязывается» к той или иной 12 -канальной группе, называемой первичной группой (ПГ). Оконечное оборудование (включающее АОК и АРК) строится с таким расчётом, чтобы на каждом этапе преобразования частоты формировались всё более и более укрупнённые группы каналов ТЧ. Причём в любой группе число каналов кратно 12.

Каждый канал содержит следующие индивидуальные устройства: на передаче ограничитель амплитуд ОА, модулятор М и полосовой фильтр ПФ; на приёме полосовой фильтр ПФ, демодулятор ДМ, фильтр нижних частот ФНЧ и усилитель низкой частоты УНЧ. Для преобразования исходного сигнала на модуляторы и демодуляторы каждого канала подаются несущие частоты, кратные 4 к. Гц. При организации телефонной связи можно использовать либо двухполосную двухпроводную, либо однополосную четырёхпроводную систему передачи. Схема, изображённая на рисунке, относится ко второму варианту.

Если канал используется для телефонной связи, то двухпроводный участок цепи от абонента соединяется с четырёхпроводным каналом через дифференциальную систему (ДС). В случае передачи других сигналов (телеграфных, данных, звукового вещания и т. д.), для которых необходим один или несколько односторонних каналов, ДС отключается. Амплитудные ограничители предотвращают перегрузку групповых усилителей (а, следовательно, уменьшают вероятность возникновения нелинейных помех) в моменты появления пиковых значений напряжений нескольких речевых сигналов.

Одинаковые полосы частот пяти ПГ разносятся по частоте в полосе 312 … 552 к. Гц и образуют 60 -канальную (вторичную) группу (ВГ). С помощью полосовых фильтров ПФ 1 – ПФ 5, подключенных к выходам групповых преобразователей, образуются сигналы вида ОБП с полосой частот 48 к. Гц каждый. В результате сложения этих неперекрывающихся по спектру пяти сигналов образуется спектр ВГ с полосой частот 240 к. Гц.

Для снижения переходных влияний между сигналами ВГ, передаваемыми по смежным трактам, в спектре ВГ могут использоваться как прямые, так и инверсные спектры ПГ 2 – ПГ 5. В первом случае на ГП 2 – ГП 5 подаются несущие частоты 468, 516, 564, 612 к. Гц, а соответствующие полосовые фильтры выделяют нижние боковые полосы (как показано на рисунке выше). Во втором случае на ГП 2 – ГП 5 подаются несущие частоты 300, 348, 396, 444 к. Гц, а полосовыми фильтрами ПФ 2 – ПФ 5 выделяются верхние боковые полосы. Несущая частота для ПГ 1 в обоих случаях одинаковая (420 к. Гц), и спектр ПГ 1 не инверсируется.

Основные характеристики групповых сообщений Эти параметры определяются соответствующими частотными, информационными и энергетическими характеристиками. По рекомендации МККТТ средняя мощность сообщения в активном канале в точке с нулевым относительным уровнем устанавливается равной 88 мк. Вт0 (– 10. 6 д. Бм 0). Однако при расчёте Pср МККТТ рекомендует принимать величину P 1 = 31. 6 мк. Вт0 (– 15 д. Бм 0) Если N ≥ 240, то средняя мощность группового сообщения в точке нулевого относительного уровня Pср = 31. 6 N, мк. Вт, а соответствующий уровень средней мощности pср = – 15 + 10 lg N , д. Бм 0.

Если N

Временное разделение каналов (ВРК), аналоговые методы передачи При ВРК на передающей стороне непрерывные сигналы от абонентов передаются поочерёдно. Принцип временного разделения каналов

Для этого эти сигналы преобразуются в ряд дискретных значений, периодически повторяющихся через определённые интервалы времени Тд, которые называются периодом дискретизации. Согласно теореме В. А. Котельникова период дискретизации непрерывного, ограниченного по спектру сигнала с верхней частотой Fв >> Fн должен быть равен Tд = 1/Fд, Fд ≥ 2 Fв Интервал времени между ближайшими импульсами группового сигнала Тк называется канальным интервалом или тайм-слотом (Time Slot).

Из принципа временного объединения сигналов следует, что передача в таких системах осуществляется циклами, то есть периодически в виде групп из Nгр = N + n импульсов, где N – количество информационных сигналов, n – количество служебных сигналов (импульсов синхронизации – ИС, служебной связи, управления и вызовов). Тогда величина канального интервала ∆tк = Тд/Nгр Таким образом, при ВРК сообщения от N абонентов и дополнительных устройств передаются по общему каналу связи в виде последовательности импульсов, длительность каждого из которых τи

Групповой сигнал при ВРК с ФИМ При временном разделении каналов возможны следующие виды импульсной модуляции: АИМ – амплитудно-импульсная модуляция; ШИМ – широтно-импульсная модуляция; ФИМ – фазоимпульсная модуляция.

Каждый из перечисленных методов импульсной модуляции имеет свои достоинства и недостатки. АИМ – проста в реализации, но плохая помехоустойчивость. Используется как промежуточный вид модуляции преобразовании аналогового сигнала в цифровой При ШИМ спектр сигнала меняется в зависимости от длительности импульса. Минимальному уровню сигнала соответствует минимальная длительность импульса и, соответственно, максимальный спектр сигнала. При ограниченной полосе канала такие импульсы сильно искажаются.

В аппаратуре с ВРК и аналоговыми методами модуляции наибольшее применение получила ФИМ, так как при её использовании можно уменьшить мешающее действие аддитивных шумов и помех путём двухстороннего ограничения импульсов по амплитуде, а также оптимальным образом согласовать неизменную длительность импульсов с полосой пропускания канала. Поэтому в системах передачи с ВРК используется, в основном, ФИМ. Характерной особенностью спектров сигналов при импульсной модуляции является наличие составляющих с частотами Ωн…Ωв передаваемого сообщения uк (t) Эта особенность спектра указывает на возможность демодуляции АИМ и ШИМ фильтром нижних частот (ФНЧ) с частотой среза, равной Ωв.

Демодуляция не будет сопровождаться искажениями, если в полосу пропускания ФНЧ не попадут составляющие нижней боковой полосы (ωд – Ωв) … (ωд – Ωн), а это условие будет выполняться, если выбрать Fд > 2 Fв. Обычно принимают ωд = (2. 3 … 2. 4)Ωв и при дискретизации телефонного сообщения с полосой частот 0. 3 … 3. 4 к. Гц частоту дискретизации Fд = ωд/2π выбирают равной 8 к. Гц, к. Гц а период дискретизации Тд = 1/Fд = 125 мкс При ФИМ составляющие спектра модулирующего сообщения (Ωн…Ωв) зависят от его частоты и имеют малую амплитуду, поэтому демодуляция ФИМ производится только путём преобразования в АИМ или ШИМ с последующей фильтрацией в ФНЧ.

Для обеспечения работы канальных модуляторов и дополнительных устройств, последовательности импульсов с частотой дискретизации Fд сдвинуты относительно первого канала на i·∆tк, где i – номер канала. Таким образом, моменты начала работы КМ определяются запускающими импульсами от РК, который определяет моменты подключения к общему широкополосному каналу соответствующего абонента или дополнительного устройства. Полученный групповой сигнал uгр(t) подаётся на вход регенератора (Р), который придаёт дискретным сигналам различных каналов одинаковые характеристики, например одинаковую форму импульса.

Все устройства, предназначенные для образования сигнала uгр(t): КМ 1 … КМN, РК, ГИС, ДУВ, ДСС, Р – входят в аппаратуру объединения сигналов (АО). Для обеспечения правильного разделения каналов РК′ АР должен работать синхронно и синфазно с РК АО, что осуществляется с помощью импульсов синхронизации (ИС), выделяемых соответствующими селекторами (СИС) и блоком синхронизации (БС). Сообщения с выходов КД поступают к соответствующим абонентам через дифференциальные системы.

Помехоустойчивость систем передачи с ВРК во многом определяется точностью и надёжностью работы системы синхронизации и распределителей каналов, установленных в аппаратуре объединения и разделения каналов Для обеспечения точности работы системы синхронизации импульсы синхронизации (ИС) должны иметь параметры, позволяющие наиболее просто и надёжно выделять их из последовательности импульсов группового сигнала u*гр(t). Наиболее целесообразным при ФИМ оказалось применение сдвоенных ИС, для передачи которых выделяют один из канальных интервалов ∆tк в каждом периоде дискретизации Тд.

Определим число каналов, которое можно получить в системе с ФИМ. Тд = (2∆tмакс + tз)Nгр, где tз – защитный интервал; ∆tмакс – максимальное смещение (девиация) импульсов. При этом полагаем, что длительность импульсов мала по сравнению с tз и tмакс. , Максимальная девиация импульсов при заданном количестве каналов Принимаем, поэтому

Учитывая, что при телефонной передаче Тд = 125 мкс, получим: при Nгр = 6 ∆tмакс = 8 мкс, при Nгр = 12 ∆tмакс = 3 мкс, при Nгр = 24 ∆tмакс = 1. 5 мкс. Помехоустойчивость системы с ФИМ тем выше, чем больше ∆tмакс. При передаче сигналов с ФИМ по радиоканалам на второй ступени (в радиопередатчике) может использоваться амплитудная (АМ) или частотная (ЧМ) модуляция. В системах с ФИМ – АМ обычно ограничиваются 24 каналами, а в более помехоустойчивой системе ФИМ – ЧМ – 48 каналами.

Временное разделение каналов (временное уплотнение линии связи)

Метод временного уплотнения используется в многоканальных линиях связи с временным разделением каналов. По таким линиям связи передаются импульсные сигналы, в то время как непрерывные сигналы типичны для линий связи с частотным разделением. При медленно изменяющихся телеметрических данных сигнал будет узкополосным (например, данные о температуре можно передавать с малой скоростью; скажем, один раз в 10 с), и крайне неэкономно за­нимать таким сигналом всю линию радиосвязи. Для увеличения эф­фективности передачи эту же линию связи можно использовать для передачи других измерений в паузах между передачей значений температуры. Ясно, что эффективное использование линии связи может быть достигнуто за счет временного разделения канала связи между несколькими измеряемыми параметрами, каждый из которых передается с частотой, соответствующей скорости его изменения. При таком временном разделении каждой измеряемой величине отводится свой повторяющийся временной интервал. В нашем при­мере в течение 10 с должно быть передано некоторое число разнооб­разных групп данных. Значения различных измеряемых величин. передаются одна за другой через одну и ту же линию связи, каждая величина в свои промежутки времени. Приемное устройство должно быть в состоянии разделить поток значений по каналам так, чтобы в каждом из каналов образовались последовательности значений, соответствующие первичной измеряемой величине. Для этого необ­ходимо обеспечить временную синхронизацию или метить каждый временной промежуток для того, чтобы на приемном конце можно было распознать каждый источник данных. На рис. 16 показаны временное уплотнение каналов и функциональная схема типичной телеметрической системы с разделением каналов по времени.

Общим методом опознавания каждого временного промежутка является отсчет его положения по отношению к синхронизующим импульсам, которые имеются в начале цикла передаваемых значе­ний данных, -«тактовые импульсы». На рис. 17,а показаны более подробные функциональные схемы коммутатора и декоммутатора.

Рис. 16.

а-распределение временных интервалов (10 каналов); б-упрощенная функциональная схема системы.

Коммутатор собирает множество входных каналов от источников сигналов в одну линию передачи. Счетчик задает каждый временной промежуток и, следовательно, место в цикле для каждого источника данных. Например, пятый канал данных в приведенной схеме под­ключен к линии радиосвязи в то время, когда счетчик находится в положении 5, или при счете 5. На рис. 17,б показана упрощенная схема коммутации и декоммутации. Когда переключатель коммута­тора находится в положении 1, в том же положении находится и переключатель декоммутатора, роль которого играет коммутатор, работающий в обратном направлении. Следовательно, данные пер­вого канала передаются и принимаются.Оба переключателя работа­ют синхронно.

Рис. 17.

а - функциональная схема; б - схема взаимодействия. Синхронизирующий сигнал в приемном устройстве может быть извлечен из передаваемых по линии связи синхроимпульсов или образован местным генератором.

Тактовый синхроимпульс обеспечивает точную синхронизацию начала цикла, гарантирующего согласованные переключения ком­мутатора и декоммутатора. Отметим, что в коммутаторе и декоммутаторе используется одинаковая аппаратура; различие заключается лишь в направлении движения данных.

Так как коммутация и декоммутация управляются фиксированной частотной синхронизацией, частота переключений также стабиль­на и длительность каждого временного промежутка одинакова. Однако это может быть невыгодным в случаях, когда для различных источников данных требуются существенно разные полосы частот. Для того чтобы понять связь между полосой частот и частотой пере­ключении, необходимо рассмотреть процесс выборки данных.

Как отмечалось ранее, синусоида может быть восстановлена из последовательности выборок ее мгновенных значений. Для воспроизведения синусоиды частоты 1 кГц с высокой верностью (искажения менее 1%) требуется по меньшей мере 5 выборок из каждого периода сигнала. Следовательно, сигнал с частотой 1 кГц должен быть подвергнут дискретизации со скоростью 5000 значений в секунду, т. е. 5 выборок на период измеряемой величины. Если мы предполагаем коммутировать сигналы от 10 источников данных (имеющих полосы частот по 1 кГц), для каждого из которых требует­ся скорость дискретизации 5000 выборок в секунду, то необходима скорость коммутации 10×5000 выборка/с = 50000 выборка/с. Ком­мутатор должен переключаться от источника к источнику с частотой 50 кГц (через 20 мс), так что каждый источник сигналов будет опро­шен один раз за каждые 10 переключений, т. е. один раз каждые 20 мс, но с частотой 5 кГц. Частота тактов, т. е. число тактов в секун­ду, будет равна 5000 такт/с. Частота переключений равна тактовой частоте, умноженной на число источников данных в системе, или тактовой частоте, умноженной на число импульсов в такте (5000×10=50000 имп./с). Линия связи должна быть в состоянии передавать импульсные данные с такой высокой частотой (50000 имп./с) без ощутимых искажений. Это означает, что необходима система связи. с шириной полосы пропускания гораздо больше 50000 Гц.

Выборки данных от различных источников в системе, показанной на рис. 16,б, непосредственно модулируют несущую. Наряду с такой непосредственной модуляцией часто бывает, что выборки данных используются для модуляции поднесущей, которая в свою ечередь модулирует несущую, как это показано штриховыми лини­ями на рис. 16,б. Выборки данных от группы источников переда­ются, таким образом, на одной из поднесущих в системе с частотным уплотнением каналов. Это позволяет применять оба метода уплот­нения каналов в одной линии связи. Сами по себе выборки данных это не что иное, как импульсные значения сигнала при амплитудно-импульсной модуляции (АИМ), т.е. информация является амплитудно-нмпульсно-модулированной. Так как такие АИМ-сигналы модулируют поднесущую (например, путем ЧМ), которая затем мо­дулирует несущую (к примеру, также путем ЧМ), то в результате получается АИМ/ЧМ/ЧМ-система.

Теперь рассмотрим пример, демонстрирующий влияние дискре­тизации сигнала на ширину полосы частот системы связи.

Рассмотрим несущую с частотой 100 МГц, которая модулируется (ЧМ) поднесущей с центральной частотой 70 кГц. Информация пере­носится с помощью частотной модуляции поднесущей 70 кГц. Таким образом, имеем ЧМ/ЧМ-канал связи. Чтобы соответствовать стан­дартам, необходимо ограничить девиацию частоты поднесущей до ±15%. Это означает, что при индексе модуляции 5 ширина полосы информации ограничена до 2100 Гц, т. е. получается гораздо уже полосы 50000 Гц, необходимой для предложенной системы с уплот­нением каналов. Если число выборок в такте было бы сокращено до одной, что означает оставление одного из источников данных, то потребовалась бы частота переключений 5 кГц, т. е. по-прежнему шире полосы 2100 Гц, которой располагает поднесущая 70 кГц. Отметим, что в случае одного источника данных не требуется ника­кого уплотнения каналов и, следовательно, возможна прямая непре­рывная передача (без выборки). В этом случае ширина полосы 2100 Гц в два раза больше полосы, необходимой для сигнала от одного источника (1 кГц в предыдущем примере). Такое ухудшение эффективности использования полосы частот (при дискретизации требуется полоса 5 кГц, без дискретизации - только 1 кГц) обус­ловлено свойствами самой дискретизации сигнала. При форми­ровании пяти выборок мгновенных значений сигнала на каждый пе­риод непрерывного сигнала мы расширяем полосу частот сигнала более чем в пять раз, а следовательно, и требуемую полосу канала. Хотя при использовании одной поднесущей для передачи сигналов от большого числа источников полоса частот используется неэффек­тивно, но это имеет и свои достоинства, проявляющиеся при узкополосных сигналах от источников. Поэтому временное разделение, требующее дискретизации сигнала, в основном используется в при­ложениях с низкими требованиями к полосе частот. Однако широкополосные сигналы тоже.могут быть переданы с использованием дли­тельных выборок. Длительность каждой выборки в таком методе го­раздо больше, чем период ннформации, и составляет 5 и более ее периодов. Это просто означает, что выборка содержит не одно мгно­венное значение, а конечный отрезок значений сигнала, передавае­мый в данный тактовый интервал времени. При таком методе необ­ходимо быть уверенным в отсутствии потерь данных за время пере­рыва передачи ниформацин от определенного источника.

Выше предполагалось, что способом передачи является ЧМ/ЧМ. Следовательно, в каждый отдельный интервал времени изменяю­щаяся частота поднесущей представляет собой значение измеряе­мой величины, подвергнувшейся выборке в это время. В течение этого интервала времени отклонение частоты от центра поднесущей соответствует напряжению выборки, которое модулирует частоту поднесущей. Ширина этих временных интервалов фиксирована, а такт их последовательности задается синхроимпульсом. Синхроим­пульс вызывает максимальное отклонение частоты и имеет длитель­ность, равную удвоенному обычному временному промежутку. Уширение необходимо для выделения импульса синхронизации из им­пульсов выборок сигналов.

Установление стандартов и контроль характеристик линий пе­редачи осуществляются различными государственными или между­народными органами (в зависимости от характера линий: спутнико­вая телеметрия - международными соглашениями, промышленная телеметрия - органами государственного контроля и т.д.). На­пример, тактовая частота должна поддерживаться постоянной с точностью ±5% (долговременная стабильность); длина такта огра­ничена не более 128 временными интервалами и т.д. (IRIG , «Стан­дарты телеметрии»). Отметим еще, что при высоких частотах поднесущих полоса часто оказывается шире; значит, частота переключении может быть выше.

Для повышения эффективности иногда полезно иметь неодина­ковую частоту выборки для разных источников.

Источник широкополосной информации должен опрашиваться чаще, чем узкополосный. Это легко достигается простыми изменения­ми во внутренних соединениях коммутатора и декоммутатора. На­пример, если мы соединим положения 1 и 5 в десятиточечном комму­таторе (уплотнителе каналов), то источник данных, соединенный с положениями 1 и 5, будет опрошен дважды за один такт, т. е. с уд­военной частотой. Возможно также произвести подкоммутацию, т.е. выделить один или более временных интервалов, длительность которых разбивается на части для передачи данных от дополнитель­ного ряда источников. Длительность интервала основного такта становится при этом подтактом для подкоммутатора.

Эти методы позволяют легко приспособить систему к широкому диапазону требований к полосе частот.

Линия связи - наиболее дорогостоящий элемент системы свя­зи. Поэтому целесообразно по ней вести многоканальную передачу информации, так как с ростом числа каналов N увеличивается ее пропускная способность С. Поичем. должно выполняться условие:

Н К - производительность к-го канала.

Основная проблема многоканальной передачи - разделение ка­нальных сигналов на приемной стороне. Сформулируем условия этого разделения.

Пусть необходимо организовать одновременную передачу несколь­ких сообщений по общему (групповому) каналу, каждое из которых описывается выражением

(7.1.1)



С учетом формулы (7.1.1.) получаем:

Иначе говоря, приемник обладает избирательными свойствами по от­ношению к сигналу Sk(t).

Рассматривая вопрос разделения сигналов различают частотное, фазовое, вре­менное разделение каналов, а также разделение сигналов по форме и другим признакам.

Второй учебный вопрос

Частотное разделение каналов

Структурная схема многоканальной системы связи (МКС) с час­тотным разделением каналов (ЧРК) приведена на рис.7.1.1, где обо­значено: ИС - источник сигнала, Мi - модулятор, Фi - фильтр i-го канала, Σ - сумматор сигналов, ГН - генератор несущей, ПРД- пе­редатчик, ЛС - линия связи, ИП - источник помех, ПРМ - прием­ник, Д - детектор, ПС - получатель сообщения.


Рис.7.1.1. Структурная схема многоканальной системы связи

При ЧРК сигналы-переносчики имеют различные частоты fi (поднесущие) и разнесены на интервал, больший или равный ширине спектра модулированного канального сигнала. Поэтому модулирован­ные канальные сигналы занимают неперекрывающиеся полосы час­тот и являются ортогональными между собой. Последние суммируют­ся (уплотняются по частоте) в блоке Σ образуя групповой сигнал, которым модулируется колебание основной несущей частоты fн в блоке М.

Для модуляции канальных переносчиков можно применять все известные способы. Но более экономично полоса частот линии связи используется при однополосной модуляции (ОБП AM), так как в этом случае ширина спектра модулированного сигнала минимальна и равна ширине спектра передаваемого сообщения. Во второй ступени моду­ляции (групповым сигналом) чаще также используется ОБП AM в проводных каналах связи.

Такой сигнал с двойной модуляцией, после усиления в блоке ПРД передается по линии связи в приемник ПРМ, где подвергается обратному процессу преобразования, т. е. демодуля­ции сигнала по несущей в блоке Д для получения группового сигнала, выделения из него канальных сигналов полосовыми фильтрами Фi и демодуляции последних в блоках Дi. Центральные частоты полосовых фильтров Фi равны частотам канальных переносчиков, а их полосы прозрачности - ширине спектра модулированных сигналов. Откло­нение реальных характеристик полосовых фильтров от идеальных не должно влиять на качество разделения сигналов, поэтому используют защитные интервалы частот между каналами. Каждый из фильтров Ф приема должен пропускать без ослабления лишь те частоты, которые принадлежат сигналу данного канала. Частоты сигналов всех других каналов фильтр должен подавить.


Частотное разделение сигналов идеальными полосовыми фильтра­ми математически можно представить так:

где g k - импульсная реакция идеального полосового фильтра, пропускаю­щего без искажений полосу частот к-го канала.

Основные достоинства ЧРК : простота технической реализации, высокая помехоустойчивость, возможность организации любого числа каналов. Недостатки: неизбежное расширение используемой полосы частот при увеличении числа каналов, относительно низкая эффек­тивность использования полосы частот линии связи из-за потерь на расфильтровку; громоздкость и высокая стоимость аппаратуры, обу­словленные в основном большим числом фильтров (стоимость фильт­ров достигает 40 % стоимости системы с ЧРК). На железнодорожном транспорте разработана МКС с ЧРК типа К-24Т, в которой исполь­зуются малогабаритные электромеханические фильтры.

Третий учебный вопрос



Понравилась статья? Поделиться с друзьями: