Принципы фон неймана проектирования вычислительных систем. Принципы фон Неймана построения электронно-вычислительной машины. N=2 I, где I – разрядность шины адреса

В 1946 Джон фон Нейман (с соавторами) описал архитектуру некоторого абстрактного вычисли­теля, который сейчас принято называть машиной фон Неймана . Эта машина является абстрактной моделью ЭВМ, однако, эта абстракция отличается от абстрактных исполнителей алгоритмов (например, машины Тьюринга). Если машину Тьюринга принципиально нельзя реализовать из-за входящей в её архитектуру бесконечной ленты, то машина фон Неймана не поддаётся реализации, так как многие детали в архитектуре этой машины не конкретизированы . Это было сделано специально, чтобы не сковывать творческого подхода к делу у инженеров-разработчиков новых ЭВМ.

В некотором смысле машина фон Неймана подобна абстрактным структурам данных, которые Вы изучали в предыдущем семестре. Для таких структур данных, как Вы помните, для их использования необходимо было произвести отображение на структуры данных хранения и реализовать соответствующие операции над этими данными.

Можно сказать, что в машине фон Неймана зафиксированы те особенности архитектуры, которые в той или иной степени должны быть присущи, по мнению авторов этой абстрактной машины, всем компьютерам. Разумеется, практически все современные ЭВМ по своей архитектуре отличаются от машины фон Неймана, однако эти отличия удобно изучать именно как отличия , проводя сравнения и сопоставления с машиной фон Неймана. При нашем рассмотрении данной машины будет обращено внимание на отличия архитектуры машины фон Неймана от современных ЭВМ. Основополагающие свойства архитектуры машины фон Неймана будут сформулированы в виде принципов фон Неймана . Эти принципы многие годы определяли основные черты архитектуры ЭВМ нескольких поколений .

На рис. 2.1 приведена схема машины фон Неймана, как она изображается в большинстве учебников, посвящённых архитектуре ЭВМ. На этом рисунке толстыми стрелками показаны потоки команд и данных , а тонкими – передача между устройствами управляющих сигналов . Машина фон Неймана состоит из памяти, устройств ввода/вывода и центрального процессора (ЦП). Центральный процессор, в свою очередь, состоит из устройства управления (УУ) и арифметико-логического устройства (АЛУ). Рассмотрим последовательно устройства машины фон Неймана и выполняемые ими функции.

Память

Принцип линейности и однородности памяти.

Память – линейная (упорядоченная) однородная последовательность некоторых элементов, называемых ячейками . В любую ячейку памяти другие устройства машины (по толстым стрелкам) могут записать и считать информацию, причём время чтения из любой ячейки одинаково для всех ячеек. Время записи в любую ячейку тоже одинаково (это и есть принцип однородности памяти). Такая память в современных компьютерах называется памятью с произвольным доступом (Random Access Memory, RAM). На практике многие ЭВМ могут иметь участки памяти разных видов, одни из которых поддерживают только чтение информации (Read Only Memory, ROM), другие могут допускать запись, но за большее время, чем в остальную память (это так называемая полупостоянная память) и др.

Ячейки памяти в машине фон Неймана нумеруются от нуля до некоторого положительного числа N, которое обычно является степенью двойки. Адресом ячейки называется её номер. Каждая ячейка состоит из более мелких частей, именуемых разрядами и нумеруемых также от нуля и до определённого числа. Количество разрядов в ячейке обозначает разрядность памяти . Каждый разряд может хранить цифру в некоторой системе счисления. В большинстве ЭВМ используется двоичная система счисления, т.к. это более выгодно с точки зрения аппаратной реализации, в этом случае каждый разряд хранит один бит информации. Восемь бит составляет один байт .

Содержимое ячейки называется машинным словом . С точки зрения архитектуры, машинное слово – это минимальный объём данных, которым могут обмениваться различные узлы машины (не надо, однако, забывать о передаче управляющих сигналов по тонким стрелкам). Из каждой ячейки памяти можно считать копию машинного слова и передать её в другую часть памяти, при этом оригинал не меняется. При записи в память старое содержимое ячейки пропадает и заменяется новым машинным словом.

Заметим, что на практике решение задачи сохранения исходного машинного слова при чтении из ячейки для некоторых видов памяти является нетривиальным и достаточно трудоёмким, так как в этой памяти (она называется динамической памятью) при чтении оригинал разрушается. Приведём типичные характеристики памяти современных ЭВМ.

1. Объём памяти – сотни миллионов ячеек (обычно восьмиразрядных).

2. Скорость работы памяти: время доступа (минимальная задержка на чтение слова) и время цикла (минимальная задержка на чтение из одной и той же ячейки двух слов) – порядка единиц и десятков наносекунд (1 секунда=10 9 наносекунд). Заметим, что для упомянутой выше динамической памяти время цикла больше , чем время доступа, так как надо ещё восстановить разрушенное при чтении содержимое ячейки.

3. Стоимость. Для основной памяти ЭВМ пока достаточно знать, что чем быстрее такая память, тем она, естественно, дороже. Конкретные значения стоимости памяти не представляют интереса в рамках наших лекций.

Принцип неразличимости команд и данных. Машинное слово представляет собой либо команду, либо подлежащее обработке данное (число, символьная информация, элемент изображения и т.д.). Для краткости в дальнейшем будем называть такую информацию ²числами². Данный принцип фон Неймана заключается в том, что числа и команды неотличимы друг от друга – в памяти и те и другое представляются некоторым набором разрядов, причём по внешнему виду машинного слова нельзя определить, что оно представляет – команду или число.

Из этого принципа вытекает очевидное следствие – принцип хранимой программы . Этот принцип является очень важным, его суть состоит в том, что программа хранится в памяти вместе с числами, а значит, может изменяться во время счёта этой программы. Говорят также, что программа может самомодифицироваться во время счёта. Заметим, что, когда фон Нейман писал свою работу, большинство тогдашних ЭВМ хранили программу в памяти одного вида, а числа – в памяти другого вида. В современных ЭВМ и программы, и данные хранятся в одной и той же памяти.

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье “Предварительное рассмотрение логической конструкции электронно-вычислительного устройства”. С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип “хранимой программы”. Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рис. 1. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.

Рис. 1. Архитектура ЭВМ, построенной на принципах фон Неймана. Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов от процессора к остальными узлам ЭВМ

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров “многоярусно” и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название “фон-неймановской архитектуры”. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

Что-то вроде ностальгии: принципы фон Неймана

Я не сумел отыскать тетрадь с первой частью лекций по Архитектуре ЭВМ, поэтому данные пришлось брать из других источников.
В 1945 году Джон фон Нэйман, физик и математик венгерского происхождения, работавший в США над проектом ENIAC, опубликовал доклад, в котором были намечены основные принципы построения компьютера. Высказанные в докладе положения получили название "Принципы фон Нэймана".

1. Принцип программного управления.
Программа состоит из набора команд, выполняемых процессором последовательно. Выборка программы из памяти осуществляется с помощью счётчика команд. Выборка команд из памяти прекращается по достижении и выполнении команды “стоп”.


Отсюда видно, что команды в программе и сами программы выполняются последоватльно друг за другом. Также архитектура фон Нэймана позволяет совершать условные и безусловные переходы в случае если необходимо выполнить команду, не следующую непосредственно после выполненной, а расположенной в другом месте памяти. Но это не нарушает последовательный принцип выполнениия команд поскольку в каждый момент времени может выполняться только одна команда.

2. Принцип однородности памяти.
Программы и данные кодируются в двоичном коде и хранятся в одной памяти. Над командами можно выполнять такие же действия, как и над данными.


Таким образом для памяти всё равно, что хранится в данной ячейке — данные или команды. Также этот принцип позволяет программе в процессе выполнения подвергать себя переработке (так в программе организуется выполнение циклов и подпрограмм). Команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык команд конкретной машины.

Разные типы данных в свою очередь могут быть различены по форматам.

3. Принцип адресности.

Структурно основная память (ОЗУ) состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.


Оперативная память как бы разбивается на ячейки фиксированной длины. Каджая такая ячейка имеет адрес (а фактически номер), обращаясь по которому можно получить содержание ячейки.

Эти принципы надолго стали определяющими в развитии ЭВМ. Лишь в 60-е годы появилась теория вычислительных систем, выходящая за пределы принципов фон Нэймана (главное отличие состояло в параллельности вычислений). Но это касалось больших профессиональных ЭВМ, а персональные компьютеры использовали эти принципы до последнего времени. Наш преподаватель архитектуры ЭВМ Игорь Юсупович говорил нам, что фоннэймановский компьютер себя практически исчерпал. Тогда я не представлял во что это выльется, а теперь двух и четырёхядерные процессоры стали обыденностью

Все современные ЭВМ, не смотря на то, что прошло большое колличество времени, работают на принципах предложенных американским математиком Джоном фон Нейманом (1903 - 1957). Также внес значительный вклад в развитие и применение ЭВМ. Был первым кто основал принципы по которым работает ЭВМ:

1. Принцип двоичного кодирования: вся информация в ЭВМ представлена в двоичном виде, сочетание 0 и 1.

2. Принцип однородности памяти: и программы и данные хранятся в одной и той же памяти.поэтому ЭВМ не распознает что хранится в данной ячейке памяти, а там могут располагаться цифры, текст, команда и т. д. Над командами можно совершать те же действия, что и надданными.

3. Принцип адресуемости памяти: схематически ОП (основная память) состоит из пронумерованных ячеек, ЦП (центральный процессор) в любой момент времени доступная любая ячейка памяти. Поэтому возможно присваивать имена блокам памяти для более удобного взаимдействия ОП и ЦП.

4. Принцип последовательного программного управления: программа состоит из совокупности команд, которые выполняются ЦП последовательно друг за другом.

5. Принцип условного перехода: не всегда происходит так, что команды выполняются одна за одной, поэтому возможно присутствие команды условного перехода, которые меняют последовательно выполнения команд в зависимости от значения хранимых данных

. Классификация современных ЭВМ.

Современные ЭВМ подразделяются на встроенные микро­процессоры , микроЭВМ (персональные компьютеры), большие ЭВМ и суперЭВМ - комплекс ЭВМ с несколькими процессорами.

Микропроцессы - процессоры, реализуемые в виде инте­граль­ных элек­трон­ных микросхем . Микропроцессоры могут встраиваться в телефоны, телевизоры и другие приборы, машины и устройства.

На интегральных микросхемах реализуются процессоры и оперативная память всех современных микро-ЭВМ, а также все блоки больших ЭВМ и суперЭВМ, а также всех программируемых устройств.

Производительность микропроцессоров составляет несколько миллионов опе­ра­ций в секунду, а объемы современных блоков оперативной памяти - несколько миллионов байтов.

МикроЭВМ - этополноценные вычислительные машины , имеющие не только процессор и оператив­ную память для обработки данных, но и устройства ввода-вывода и накопления информации.

Персональные ЭВМ - это микроЭВМ , имеющие устройства отображения на электронных экранах, а также устройства ввода-вывода данных в виде клавиатуры, и возможно - устройства подключения к сетям ЭВМ.

Архитектура микро-ЭВМ основанана использованиисистемной магист­рали - устройствасопря­же­ния, к которому подключаются процессоры и блоки опера­тивной памяти, а также все устройства ввода-вывода информации.

Использование магистрали позволяет менять состав и структуру микроЭВМ - добавлять дополнительные устройства ввода-вывода и наращивать функциональные возможности вычислительных машин.

Долговременное хранение информации в современных ЭВМ проводится с использованием электронных, магнитных и оптических носителей - магнит­ных дисков, оптических дисков и блоков флеш-памяти.

Архитектура современных ЭВМ предполагаетобязательноеналичие долговременной памяти, где размещаются файлы, пакеты про­грамм, базы данных и управляющие операционные системы.

Большие ЭВМ - компьютеры высокой производительности с большим объемом внешней памяти. Большие ЭВМ исполь­зуют в качестве серверов сетей ЭВМ и больших хранилищ данных.

Большие ЭВМ используются как основа для организации корпоративных информационных систем , обслуживающих промышленные корпорации и органы государственной власти.

СуперЭВМ - это многопроцессорные ЭВМ со сложной архитектурой, обла­дающие наиболее высокой производительностью и используемые для решения суперсложных вычислительных задач.

Производительность суперЭВМ составляет десятки и сотни тысяч мил­лиардов вычи­сли­тель­ных операций в секунду. При этом в суперЭВМ все более увели­чивается количество процессоров и усложняется архитектура ЭВМ.

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье "Предварительное рассмотрение логической конструкции электронно-вычислительного устройства". С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы". Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура - устройство ввода, дисплей и печать - устройства вывода.

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно" и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название "фон-неймановской архитектуры". Подавляющее большинство вычислительных машин на сегодняшний день - фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

Принципы фон Неймана

Принцип однородности памяти - Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции -- перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.

Принцип адресности- Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек -- адреса.

Принцип программного управления- Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов -- команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно.

Принцип двоичного кодирования - Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды можно выделить два поля: поле кода операции и поле адресов.

· Принцип двоичного кодирования

· Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами.

· Принцип однородности памяти

· Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти

· Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

· Принцип последовательного программного управления

· Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

· Принцип жесткости архитектуры

· Неизменяемость в процессе работы топологии, архитектуры, списка команд.

· Компьютеры, построенные на этих принципах, относят к типу фон-неймановских.

· Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

· Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день. И хотя программы для современных компьютеров могут писаться годы, однако они работают на миллионах компьютеров после несколько минутной установки на жесткий диск.

·

· Машина фон Неймана состоит из запоминающего устройства (памяти) - ЗУ, арифметико-логического устройства - АЛУ, устройства управления – УУ, а также устройств ввода и вывода.

· Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

· Команда состоит из указания, какую операцию следует выполнить (из возможных операций на данном «железе») и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат (если его требуется сохранить в ЗУ).


· Арифметико-логическое устройство выполняет указанные командами операции над указанными данными.

· Из арифметико-логического устройства результаты выводятся в память или устройство вывода. Принципиальное различие между ЗУ и устройством вывода заключается в том, что в ЗУ данные хранятся в виде, удобном для обработки компьютером, а на устройства вывода (принтер, монитор и др.) поступают так, как удобно человеку.

· УУ управляет всеми частями компьютера. От управляющего устройства на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии.

· Управляющее устройство содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство - «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

· В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

16)Структура и архитектура вычислительной системы

Система (от греческого systema - целое, составленное из частей соединение) - это совокупность элементов, взаимодействующих друг с другом, образующих определенную целостность, единство.
Вычислительная система - это совокупность одного или нескольких компьютеров или процессоров, программного обеспечения и периферийного оборудования, организованная для совместного выполнения информационно-вычислительных процессов.
Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку.
Основные принципы построения, закладываемые при создании ВС:
возможность работы в разных режимах;
модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать вычислительные системы без коренных их переделок;
унификация и стандартизация технических и программных решений;
иерархия в организации управления процессами;
способность систем к адаптации, самонастройке и самоорганизации;
обеспечение необходимым сервисом пользователей при выполнении вычислений
По назначению ВС делят на
универсальные,
проблемно-ориентированные
специализированные.
Универсальные предназначаются для решения широкого класса задач. Проблемно-ориентированные используются для решения определенного круга задач в сравнительно узкой сфере. Специализированные ориентированы на решение узкого класса задач
По типу ВС различаются на
многомашинные
многопроцессорные.
Вычислительная система может строиться на базе либо целых компьютеров (многомашинная ВС), либо на базе отдельных процессоров (многопроцессорная ВС).
По типу ЭВМ или процессоров различают
однородные – строятся на базе однотипных компьютеров или процессоров.
неоднородные системы – включает в свой состав различные типы компьютеров или процессоров.
Территориально ВС делятся на:
сосредоточенные (все компоненты располагаются в непосредственной близости друг от друга);
распределенные (компоненты могут располагаться на значительном расстоянии, например, вычислительные сети);
По методам управления элементами ВС различают
централизованные,
децентрализованные
со смешанным управлением.

По режиму работы ВС различают системы, работающие в
оперативном
неоперативном временных режимах.
Кроме этого, ВС могут быть структурно
одноуровневыми (имеется лишь один общий уровень обработки данных);
Многоуровневыми (иерархическими) структурами. В иерархических ВС машины или процессоры распределены по разным уровням обработки информации, некоторые машины (процессоры) могут специализироваться на выполнении определенных функций.
Структура вычислительной системы.
Структура ВС - это совокупность комплексируемых элементов и их связей. В качестве элементов ВС выступают отдельные ЭВМ и процессоры.
В описанной многоуровневой структуре реализуется классическая фон- неймановская организация ВС и предполагает последовательную обработку информации по заранее составленной программе.
Архитектура вычислительных систем. Классификация архитектур вычислительных систем.
Архитектура системы – совокупность свойств системы, существенных для пользования.
Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д.
Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер.
Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко.
Самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М.Флинном.

· Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: SISD,MISD,SIMD,MIMD.
SISD (single instruction stream / single data stream) - одиночный поток команд и одиночный поток данных. К этому классу относятся, прежде всего, классические последовательные машины, или иначе, машины фон-неймановского типа, например, PDP-11 или VAX 11/780. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка - как машина CDC 6600 со скалярными функциональными устройствами, так и CDC 7600 с конвейерными попадают в этот класс.
SIMD (single instruction stream / multiple data stream) - одиночный поток команд и множественный поток данных. В архитектурах подобного рода сохраняется один поток команд, включающий, в отличие от предыдущего класса, векторные команды. Это позволяет выполнять одну арифметическую операцию сразу над многими данными - элементами вектора. Способ выполнения векторных операций не оговаривается, поэтому обработка элементов вектора может производится либо процессорной матрицей, как в ILLIAC IV, либо с помощью конвейера, как, например, в машине CRAY-1.
MISD (multiple instruction stream / single data stream) - множественный поток команд и одиночный поток данных. Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Однако ни Флинн, ни другие специалисты в области архитектуры компьютеров до сих пор не смогли представить убедительный пример реально существующей вычислительной системы, построенной на данном принципе. Ряд исследователей относят конвейерные машины к данному



Понравилась статья? Поделиться с друзьями: