Плазменные дисплеи, их достоинства и недостатки. Что лучше: плазменный или жидкокристаллический телевизор

Фил Коннор
Ноябрь 2002г

Что лучше: плазменная панель или LCD телевизор?

Это зависит от многих факторов. Тема обсуждения двух технологий, которые обрабатывают и отображают входной видео- или компьютерный сигнал совершенно по-разному, сложна и изобилует многочисленными деталями. Обе технологии быстро прогрессируют, а их себестоимость и розничные цены снижаются одновременно. В ближайшем будущем между этими технологиями неизбежно столкновение в линейке 40-дюймовых (по диагонали) мониторов/телевизоров.

Ниже перечисляются некоторые преимущества каждой технологии; также даётся объяснение связи между этими преимуществами и покупателями той и другой технологии в различных областях применения:

1) ВЫЖИГАНИЕ ЭКРАНА

Для LCD можно не учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. В технологии LCD (жидкокристаллический дисплей) применяется по сути флуоресцентная тыловая лампа, свет от которой идёт через пиксельную матрицу, содержащую жидкокристаллические молекулы и поляризованный субстрат для придания формы яркости и цвету. Жидкий кристалл, находящийся в LCD, в действительности применяется в твёрдом состоянии.

У плазменной технологии, напротив, следует учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. Статические изображения начнут «выжигать» отображаемую картинку уже через короткий промежуток времени - в некоторых случаях, спустя приблизительно 15 минут. Хотя «выжигание» можно обычно «снять», выводя на весь экран серое или сменяющие друг друга одноцветные поля, оно тем не менее является существенным фактором, препятствующим развитию плазменной технологии.

Преимущество: LCD

Для таких областей применения, как отображение в аэропортах информации о полётах, статические картинки-витрины в розничных магазинах или постоянные информационные показатели, LCD–монитор будет наилучшим вариантом.

2) КОНТРАСТНОСТЬ

Плазменная технология добилась значительных успехов в разработке изображений повышенной контрастности. Panasonic утверждает, что их плазменные дисплеи имеют контрастность 3000:1. Плазменная технология просто блокирует подачу электропитания (посредством сложных внутренних алгоритмов) на определенные пикселы для того, чтобы сформировать тёмные или чёрные пикселы. Эта методика действительно даёт тёмные чёрные цвета, хотя иногда и в ущерб проработке полутонов.

В LCD технологии, напротив, нужно увеличивать подачу энергии, чтобы сделать пикселы более тёмными. Чем больше напряжение, подаваемое на пиксел, тем темнее LCD-пиксел. Несмотря на достигнутые улучшения LCD технологии в плане контрастности и уровня чёрного, даже лучшие производители LCD технологии, например Sharp, могут обеспечить контрастность лишь между 500:1 и 700:1.

Для просмотра DVD фильмов, где обычно много очень светлых и очень темных сюжетов и в компьютерных играх с характерным для них обилием темных сцен, плазменная панель имеет явное преимущество.

3) ДОЛГОВЕЧНОСТЬ

Производители LCD утверждают, что долговечность их мониторов/телевизоров составляет от 50.000 до 75.000 часов. LCD-монитор может работать столь же долго, сколько работает тыловая лампа (которую в действительности можно заменять), так как свет от неё, подвергаясь воздействию жидкокристаллической призмы, обеспечивает яркость и цвет. Призма является субстратом, и поэтому на самом деле ничего не выжигает.

С другой стороны, в плазменной технологии на каждый пиксел подаётся электрический импульс, который возбуждает инертные газы - аргон, неон и ксенон (люминофоры), необходимые для обеспечения цвета и яркости. Когда электроны возбуждают люминофор, атомы кислорода рассеиваются. Изготовители плазмы оценивают долговечность люминофоров и, следовательно, самих панелей в 25.000 – 30.000 часов. Люминофоры не могут быть заменены. Не существует такого явления, как закачка новых газов в плазменный дисплей.

Преимущество: LCD, в два и более раза.

В промышленных/коммерческих областях применения (например, в витринах информационных табло, где дисплеи должны работать круглосуточно), где как правило не слишком высокие требования к качеству изображения, LCD будет наилучшим вариантом для длительного использования.

4) НАСЫЩЕННОСТЬ ЦВЕТА

Цвет более точно воспроизводится в плазменных панелях, поскольку вся информация, необходимая для воспроизведения любого оттенка в спектре, содержится в каждой ячейке. Каждый пиксел содержит синий, зелёный и красный элементы для точной передачи цвета. Насыщенность, достигаемая благодаря конструкции пиксела плазменной панели, обеспечивает, на мой взгляд, самые живые цвета среди дисплеев всех типов. Координаты цвета в цветовом пространстве в хороших плазменных панелях намного более точны, чем в LCD.

В LCD по физическим условиям прохождения волн сквозь длинные тонкие жидкокристаллические молекулы сложнее добиться эталонной точности и живости цветопередачи. Цветовая информация имеет преимущество вследствие меньшего размера пиксела в большинстве LCD–телевизоров. Однако при одинаковом размере пиксела цвет будет не таким выразительным, как у плазменных панелей.

Плазменная технология превосходит LCD при показе видео, особенно, в динамичных сценах. LCD предпочтительна для отображения статических компьютерных изображений, не только из-за выжигания, но и потому, что она также обеспечивает прекрасные однородные цвета.

5) ВЫСОТА НАД УРОВНЕМ МОРЯ

Как было упомянуто выше, в LCD применяется технология задней подсветки в комбинации с жидкокристаллическими молекулами. В принципе, нет ничего, что служило бы препятствием для размещения этого монитора на высокогорье, как и нет никаких реальных ограничений. Этим объясняется использование LCD экранов в качестве главного обзорного экрана для отображения видеоинформации о полётах.

Поскольку ячейка плазменного экрана в плазменных панелях в действительности является стеклянной оболочкой, наполненной инертным газом, то разреженный воздух приводит к росту давления газа внутри этой оболочки и увеличивает мощность, требуемую для нормального охлаждения плазменной панели, в результате чего появляется характерное гудение (жужжание) и слишком заметный шум от вентилятора. Эти проблемы возникают на высоте приблизительно 2.000 метров.

Преимущество: LCD

На высоте Денвера и выше для любых областей применения я бы использовал LCD мониторы.

6) УГОЛ ОБЗОРА

Производители плазменных мониторов всегда утверждали, что их изделия имеют угол обзора 160° - по сути, это так и есть. LCD добилась значительных успехов в увеличении угла обзора. В LCD-мониторах нового поколения фирм Sharp и NEC материал ЖК-основы значительно улучшен; расширен и динамический диапазон. Но несмотря на эти успехи, при просмотре монитора/телевизора под большими углами заметное отличие между двумя технологиями всё ещё сохраняется.

Преимущество: плазменная панель

Каждая ячейка плазменной панели представляет собой самомстоятельный источник света, что позволяет добиться превосходной яркости каждого пиксела. Отсутствие устройства задней подсветки (как в LCD) тоже хорошо с точки зрения угла обзора.

7) ИСПОЛЬЗОВАНИЕ С КОМПЬЮТЕРОМ

LCD эффективно отображает статические компьютерные изображения, без мерцаний и выжигания экрана.

Плазменной панели труднее обрабатывать статические изображения от компьютера. Хотя их отображение выглядит удовлетворительным, проблемой является выжигание экрана; представляет трудность и эффект ступенчатости, встречающийся в панелях с меньшей разрешающей способностью при отображении статичного текста (Power Point). Видеоизображения с компьютера получаются качественными, но возможно некоторое мерцание, зависящее как от заводского качества панели, так и от отображаемого разрешения. Плазменная панель, конечно же, по-прежнему выигрывает по углу обзора.

Преимущество: LCD, за исключением больших углов обзора.

8) ВОСПРОИЗВЕДЕНИЕ ВИДЕО

Здесь первенство за плазменными панелями, благодаря прекрасному качеству при отображении сцен с быстрым движением, высокому уровню яркости, контраста и цветовой насыщенности.

На LCD могут быть заметны цветовые шлейфы во время показа видеосцен с быстрым движением, так как эта технология медленнее отрабатывает изменения цвета. Причиной этого являются световые призмы, которые должно быть появляются вследствие воздействия напряжения, управляющего отклонением светового луча. Чем более высокое напряжение подаётся на кристалл, тем темнее становится изображение в этой части LCD панели. По этой же причине у LCD более низкие уровни контрастности.

Преимущество: плазменная панель, с большим запасом.

DVD или любое потоковое видео, TV или HDTV – от любого из этих видеоисточников плазменная панель покажет неразмытое, с высокой контрастностью (в зависимости от плазмы), насыщенное цветами изображение. Несмотря на значительные успехи в этом направлении, LCD по-прежнему испытывает некоторые трудности при сравнительно больших размерах экрана, хотя при меньших размерах смотрится превосходно.

9) ОБЪЕМЫ ПРОИЗВОДСТВА И СТОИМОСТЬ

Хотя обе технологии испытывают трудности при создании мониторов большого размера, большую плазменную панель все же оказалось сделать легче, производители уже выпустили плазменные панели с диагональю более 60 дюймов. Хотя такие мониторы всё ещё стоят дорого, они продемонстрировали свою эффективность и надёжность. ЖК-основу большого размера для LCD телевизора трудно изготовить без дефектных пикселов. На данный момент самый большой LCD экран - это 40–дюймовая коммерческая версия фирмы NEC. До этого Sharp наращивал свою линейку LCD-мониторов от 20 до 22 и затем до 30 дюймов, а сейчас начинает поставлять на рынок новую 37–дюймовую широкоэкранную панель.

Преимущество: плазменная панель.

Несмотря на то, что себестоимость и цены на изделия обеих технологий снижаются (за исключением цен на большие плазменные панели), плазменная панель по-прежнему имеет более низкую себестоимость производства и поэтому имеет преимущество в цене. 50–дюймовые плазменные панели чрезвычайно популярны и быстро отвоевывают долю рынка у ранее доминировавших 42–дюймовых панелей. Такая тенденция для плазменных панелей, имеющих более высокий процент выхода годных изделий в производстве и, как следствие, более низкую себестоимость, будет, вероятно, сохраняться в течение по меньшей мере 2-х лет.

10) ТРЕБОВАНИЯ ПО НАПРЯЖЕНИЮ

Поскольку в LCD для получения света используется флуоресцентная лампа задней подсветки, у этой технологии гораздо меньшие требования по напряжению, чем у плазменных панелей. С другой стороны, при использовании плазменной панели необходимым (трудновыполнимым) условием является подача питания на сотни тысяч прозрачных электродов, которые возбуждают свечение ячеек люминофора.

Что такое плазма?

Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов. Электроны `компенсируют` протоны, таким образом, что общий заряд атома равен нулю. Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу. Среди всего этого хаоса частицы постоянно сталкиваются.

Столкновения `возбуждают` атомы газа в плазме, заставляя из высвобождать энергию в виде фотонов. В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии `возбуждения` они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра.

История создания плазменных панелей или экранов

Все было для оборонки. Даже если сами ученые думали, что работают для собственного удовольствия. Они заблуждались.

Шел 1963 год. Дональд Битцер из Университета штата Иллинойс работал над обучающими системами, позволяющими отображать не только буквы и цифры, как было в то время, но и графику. Успехи на данном поприще были неважные.

В конце концов Битцер набрал команду для работы над новым проектом. Он собирался выяснить, как будет работать матрица из неоновых ячеек, если сквозь них пропускать высокочастотный электрический ток.

Для своей работы Битцер привлек Жене Слоттова и студента Роберта Вильсона. Как шли дела, теперь уже не выяснить, только в патент на изобретение вписаны все три имени.

Летом 1964 года появился первый плазменный дисплей. На современные панели он был похож весьма отдаленно. Смешно, но он состоял всего из одного единственного пикселя. Сейчас в каждой панели их - миллионы.

Естественно, дисплей из одного пикселя - не дисплей. Однако, не прошло и десяти лет, как приемлемые результаты были достигнуты. В 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue.

В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии на «плазму» компании IBM. Это сейчас она стала понемногу отходить в тень, а тогда сильнее игрока на рынке компьютеров вообще не было.

Плазменные дисплеи были впервые использованы в PLATO компьютерные терминалы. Это PLATO V модель иллюстрирует дисплея монохроматическом оранжевого свечения видели, как в 1981 году.

В том же году появилась панель IBM 3290 Information Panel - первый коммерческий продукт, выпускавшийся массовыми тиражами.

Уже в 1982 году начали выпускать дисплеи Plasmascope для контроля пусков баллистических ракет наземного базирования. Правда, в то время это им не очень помогло. В общем, компьютерные фирмы довольно быстро забросили плазменные панели. Последней от их производства отказалась IBM в 1987 году. К тому времени "плазму" выпускал в ограниченных количествах только Пентагон. У него-то денег всегда было в достатке.

К началу девяностых появились коммерческие LCD-дисплеи и дела у плазмы пошли совсем неважно. Тогда выпускались лишь черно-белые плазменные панели и конкурировать с LCD они, в общем, не могли. Да и проблемы с контрастностью не радовали - этот показатель хромал даже у самых продвинутых моделей. Тем не менее, «плазма» прижилась в компании Matsushita, теперь известной, как Panasonic. В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, лучшей в отрасли.

В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+. Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати.

Технология плазменных экранов

Основываясь на информации видеосигнала, мощный пучок электронов «зажигает» тысячи маленьких точек, называемых пикселями. В большинстве систем всего три цвета пикселей - красный, зеленый и синий, - которые равномерно распределены по всему экрану. Благодаря смешиванию этих цветов в различных пропорциях телевизоры могут воссоздавать всю гамму оттенков.

Изображение на плазменной панели создается путем свечения маленьких цветных флуоресцентных лампочек. Каждый пиксель сделан из трех флуоресцентных лампочек - красной, зеленой и синей. Благодаря разной яркости лампочек, как и ЭЛТ телевизоры, плазменные панели могут воспроизводить всю цветовую гамму.

Центральным элементом флуоресцентных лампочек является плазма - газ, состоящий из свободных ионов (заряженных атомов) и электронов (отрицательно заряженных частиц). В обычных условиях газ состоит из незаряженных частиц, то есть атомов с равным количеством протонов (положительно заряженных частиц, расположенных в ядре атома) и электронов. Отрицательно заряженные электроны нейтрализуют положительно заряженные протоны, вследствие чего суммарный заряд атома равняется нулю.

Если вы добавите в газ большое количество свободных электронов, пропуская через него электрический разряд, ситуация изменится очень быстро. Свободные электроны, сталкиваясь с атомами, <выбивают> из них валентные электроны. При потере электрона, атом приобретает положительный заряд и, тем самым, становится ионом.

Когда через плазму пропускается электрический ток, отрицательно заряженные частицы притягиваются к положительно заряженной области плазмы, и наоборот.

Стремительно двигаясь, частицы постоянно сталкиваются друг с другом. Эти столкновения возбуждают атомы газа в плазме, и они испускают фотоны.

Атомы ксенона и неона, использующиеся в плазменных панелях, в возбужденном состоянии испускают фотоны света. В основном это фотоны ультрафиолета, которые не видны невооруженным глазом, но, как мы увидим в следующем параграфе, они могут активировать видимые фотоны света.

Внутри панели: газ и электроды

В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер, расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода. Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды, окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла.

Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды - вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку.

Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.

Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд. Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета.

Плазменный экран

Плазменные панели немного похожи на ЭЛТ-телевизоры - покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку.Ячейки заполнены интернтыми` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться.

По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц.

Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия. На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы).

Внутри дисплея

В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели.

Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку. Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди. Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне. Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор - материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.

Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие - из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов. Главное преимущество производства плазменных дисплеев - возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей - их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей.

Срок службы плазменных панелей

Срок службы плазменных панелей измеряется относительно полупериода сгорания газообразного фосфора. Как утверждают производители, после сгорания всего фосфора качество изображения значительно ухудшается по сравнению с первоначальным, и, возможно, потребуется заменить панель. В рассматриваемом случае полупериод сгорания - ровно половина срока службы панели.

После 1000 часов эксплуатации уровень яркости составляет примерно 94% от первоначального.

Так как фосфор сгорает с постоянной интенсивностью, качество изображения ухудшается пропорционально скорости распада. Можете считать этот процесс просто «свечением» фосфора. Сразу после включения плазменного телевизора, фосфор, содержащийся в экране, начинает медленно сгорать. Таким образом, газа для свечения экрана остается все меньше. Вследствие этого яркость и насыщенность цвета постепенно уменьшаются. После 1000 часов эксплуатации уровень яркости составляет примерно 94% от первоначального; после 15000-20000 - около 68% (т.е. светится 68% фосфора). Многое зависит от уровня контрастности. Если Вы хотите, чтобы плазменная панель прослужила дольше, снизьте показатель контрастности в экранном меню. Если Вы выставите показатель контрастности на максимум, фосфор будет сгорать намного быстрее.

Большинство производителей утверждает, что срок службы их панелей при «нормальном» уровне контрастности (около 50%) составляет приблизительно 30000 часов. Однако, недавно некоторые компании-производители, особенно Sony и Panasonic, заявили, что период спада качества изображения их новых плазменных телевизоров наступает лишь после 60000 часов использования. Мы немного скептично относимся к заявлениям подобного рода. Хотя и осознаём, сколь много было сделано для увеличения срока службы плазменных телевизоров (например, повышенная устойчивость зеленого фосфора), все же поверим этим данным только после того, как они подтвердятся в реальных условиях, а не только теоретически.

С точки зрения покупателей 30000 часов должно быть достаточно, так как срок службы ЭЛТ телевизоров примерно тот же. С другой стороны, согласно исследованию американских статистических компаний, обычная семья в среднем смотрит телевизор от 4 до 6 часов в день; соответственно, срок службы плазменной панели составит от 13 до 20 лет.

Как продлить срок службы панели?

Следуйте приведенным ниже указаниям, чтобы продлить срок службы вашего плазменного телевизора:

  • 1) Выставляйте уровень ЯРКОСТИ и КОНТРАСТНОСТИ в соответствии с условиями просмотра. Старайтесь не увеличивать уровень Контрастности без необходимости - это только быстрее сжигает фосфор. В ярко освещенных комнатах Вам, возможно, потребуется повышенная Контрастность; ночью или в затемненных помещениях уровень Контрастности следует снизить.*
  • 2) Не оставляйте статичное изображение на экране на длительные периоды времени (более 20 минут). В противном случае на экране появится остаточное изображение.
  • 3) После просмотра выключайте плазменную панель.
  • 4) Используйте плазменный телевизор в помещениях с хорошей вентиляцией. Благодаря качественной системе вентиляции плазменный экран прослужит дольше.

* Последнее время большинство производителей «выносят» опцию корректировки контрастности на пульт ДУ; заходить при этом в экранное меню не требуется.

Как избежать выгорания плазменной панели?

Помимо вопроса о сроке службы плазменных телевизоров, покупатели часто интересуются проблемой выгорания экрана, которая, как утверждают производители, является следствием неправильной эксплуатации панели. Все это очень серьезно; соответственно встает вопрос: Что же такое выгорание плазменных панелей, и как необходимо их использовать, чтобы избежать подобного эффекта?

Чаще всего эффект выгорания встречается на экранах банкоматов. Все мы хорошо знакомы с результатом того, что одна и та же картинка - раздел меню «вставьте карточку» - отображается на экране слишком долго. Замечали, как в течение всей операции с банкоматом на заднем фоне неясно вырисовывается эта серая надпись? Это и есть эффект выгорания экрана; он постоянен.

Не вдаваясь в технические подробности, выгорание - это поврежденный пиксель, чей фосфор был преждевременно израсходован и, поэтому, он светится слабее, чем окружающие его пиксели. Причина кроется в том, что поврежденный пиксель «запоминает» цвет, которым он светился длительное время. Этот цвет «выжигается» на стекле плазменного экрана (отсюда берет свое начало термин «выгорание»). Поврежденный фосфор не может светиться также как обычный.

Пиксели обычно не выгорают поодиночке, так как этот эффект появляется вследствие продолжительного отображения статичной картинки на плазменном экране - например, сетевых логотипов, компьютерных иконок, окошек Интернет браузеров и т.д.

Советы


  • Не оставляйте статичное изображение на экране панели. Всегда выключайте панель после просмотра. Не ставьте DVD на паузу на длительное время.
  • Плазменные экраны чаще подвержены выгоранию в течение первых 200 часов использования. «Свежий» фосфор сгорает быстрее, чем уже использованный. Это означает, что на экране новых плазменных панелей чаще возникает «ореол» после длительного проецирования статичного изображения. Вероятно, это происходит вследствие того, что из-за высокой яркости «свежий» фосфор взрывается. Обычно подобный эффект исчезает через некоторое время сам по себе. Если оставлять статичное изображение на экране на длительное время, то за эффектом ореола может последовать выгорание экрана.

Меры предосторожности: Будьте внимательны при первом включении панели. Выставьте уровень КОНТРАСТНОСТИ не более 50% - превышение повлечет за собой более интенсивное сгорание фосфора и, как следствие, выгорание экрана. Используйте предусмотренные функции защиты от выгорания - например, функцию серого изображения, которая при помощи повторной калибровки яркости пикселей устраняет эффект ореола. В идеале эту функцию следует применять приблизительно через каждые 100 часов использования плазменной панели. (Замечание: Эти процессы влияют на ресурс фосфора, так что их следует использовать только при необходимости.)

Некоторые плазменные панели выгорают чаще других. По наблюдениям, пользователи панелей типа AliS - производства компаний Hitachi и Fujistu - чаще сталкиваются с проблемой выгорания экрана.
Используйте функции защиты от выгорания, такие как управление режимом электропитания, регулятор изображения (по вертикали и горизонтали) и автоматический хранитель экрана. Проверьте руководство пользователя на предмет дополнительной информации.

Важно понять, что качество изображения напрямую зависит от выгорания экрана. Вы хотите приобрести плазменный телевизор для просмотра ТВ- программ формата 4:3. Не следует оставлять черные полосы на экране плазменного телевизора на долгое время; поэтому, ТВ-программы лучше смотреть в широкоэкранном режиме (16:9). При хорошем масштабировании Вы не заметите существенной разницы в качестве изображения.

Высококачественные телевизоры более устойчивы к выгоранию, хотя и не полностью. Из всех плазменных панелей, которые приходилось тестировать, менее всего подверженными выгоранию оказались модели компании NEC, Sony, Pioneer и Panasonic. Но несмотря на это, эксперты НИКОГДА, независимо от качества панели, не оставляют статичное изображение на экране дольше чем на час.

Вы должны понимать, что некоторые приложения не подходят для использования с плазменными панелями.

Например, статичное отображение расписания полетов в аэропорте. Зачастую можно удивиться, заходя в аэропорт, свисающему с потолка абсолютно выгоревшему плазменному монитору. Единственное для чего они используются - проецирование одной и той же информации часами. Это один из многочисленных примеров, где плазменные панели используются не по назначению. (Заметьте, последнее время в аэропортах стали использовать новое программное обеспечение, которое во избежание выгорания плазменного монитора постоянно перемещает изображение.)

Выводы

Эффект выгорания не является причиной, по которой не стоит покупать плазменные телевизоры. При надлежащем использовании большинство пользователей плазменных панелей никогда не столкнется с проблемой остаточного изображения. Иногда может возникать эффект ореола, но это не повод для беспокойства. В действительности, небрежность в обращении - то есть безразличие к тому, что и как долго показывает плазменная панель, - является основной причиной выгорания экрана.

Сервисный центр "MTechnic" осуществляет профилактику, диагностику и ремонт LCD-телевизоров, ремонт проекционных телевизоров и ремонт плазменных панелей следующих марок: Sony (Сони), Thomson (Томсон), Toshiba (Тошиба), Panasonic (Панасоник), Lg (Эл Джи), Philips (Филипс), Grundig (Грюндик), Samsung (Самсунг), RFT (РФТ) и других производителей.

Территория охвата: Москва, Зеленоград, Московская область (МО). Для вашего удобства работает наша курьерская служба (бесплатно), подробнее в разделе "контакты "

, монитор , основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря - в плазме . (См. также: SED).

История

Оранжевая монохромная индикаторная панель Digivue в PLATO V, 1981

Плазменная панель была разработана в Университете Иллинойса в процессе создания системы электронного обучения США доктором Дональдом Битцером (Donald Bitzer), Жене Слоттовым (H. Gene Slottow) и Робертом Вильсоном (Robert Willson) . Патент на изобретение они получили в 1964 году. Первый плоский дисплей состоял из одного пикселя.

В 1971 году компания «Owens-Illinois» приобрела лицензию на производство дисплеев Digivue. В 1983 году Университет Иллинойса продал лицензию на производство плазменных панелей компании IBM.

Первый в мире 21-дюймовый (53 см) полноцветный дисплей представила в 1992 году компания Fujitsu . В 1999 году «Matsushita» («Panasonic ») создала перспективный 60-дюймовый прототип.

Начиная с 2010 года производство плазменных телевизоров сокращалось из-за невозможности конкурировать с более дешевыми LED-телевизорами и в 2014 практически прекратилось .

Конструкция

Устройство плазменной панели

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды , образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

  • субпиксель плазменной панели обладает следующими размерами: 200 x 200 x 100 мкм ;
  • передний электрод изготовляется из оксида индия и олова , поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома , несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газами - неоном или ксеноном (реже используется гелий и/или аргон , или, чаще, их смеси) с добавлением .

Химический состав люминофора:

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки - в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ -мониторах. В последних моделях PDP обновление экрана происходит на частотах 400 - 600 Гц, что позволяет человеческому глазу не замечать мерцания экрана.

Принцип действия

Работа плазменной панели состоит из трёх этапов:

  1. инициализация , в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочения.
  2. адресация , в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В ), а на шину сканирования отрицательный (–75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка , в ходе которой на шину сканирования подаётся положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация - адресация - подсветка» образует формирование одного подполя изображения. Складывая несколько подполей, можно обеспечивать изображение заданной яркости и контраста . В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Преимущества и недостатки

Преимущества:

  • высокая контрастность;
  • глубина цветов;
  • стабильная равномерность на чёрном и белом цвете;
  • наибольший срок службы (30 лет) по сравнению с ЖК-панелями (7-10 лет)

Недостатки:

  • более высокое энергопотребление в сравнении с ЖК-панелями;
  • крупногабаритные пиксели и, как следствие, только достаточно крупногабаритные плазменные панели обладают достаточным экранным разрешением ;
  • выгорание экрана от неподвижного изображения (эффект памяти), например, от логотипа телеканала. Происходит из-за перегрева люминофора и последующего его испарения. http://televizor-info.ru/wp-content/uploads/2013/08/22.jpg http://televizor-info.ru/wp-content/uploads/2013/08/11.jpg Подобный эффект наблюдается и на OLED -телевизорах (экран на органических светодиодах). Выгоревшие OLED-экраны http://www.mobiledevice.ru/Images/65/News_65860_6.jpg https://s8.hostingkartinok.com/uploads/images/2018/06/e7ea71b85f2867f13bb8cf630d50dddc.jpg

Решила разобраться в такой понтовой теме как плазменный дисплей.

Многие люди мучаются вопросом: «Шо же такое плазменный дисплей и насколько это круто, а лучше – насколько это удобно?». Мы разберем эту тему по винтикам и узнаем всю соль!

Название

Почему мы начали с названия? Правильно, существует хотя-бы 3 различных, и часто употребляемых варианта данному устройству (Дисплей, панель, экран), с которыми нужно разобраться в первую очередь.
Панель – наиболее звучное и употребляемое название данного типа экрана. Выражение «У меня дома плазменная панель» - стало чем-то притягательным и мощным, ибо мы в подсознании представляем себе нечто большое, высокотехнологичное с сочной картинкой. Ирония в том, что слово панель неправильно употреблять по отношению к , монитору и т.д. Стилистически верное слово, неверно грамматически.
Дисплей – второе по употребляемости, верно и грамматически. Поскольку патент зарегистрированный тремя мужиками, которые первыми притворили эту технологию в жизнь, содержал именно слово Дисплей.
Экран – вполне, почему бы и нет. Синоним к слову дисплей.

Сравниваем

Данные мы будем приводить в сравнении с , это очевидно. Да, имеют свои плюшки, но они не используются в том сегменте, где плазма и ЖК.

Преимущества

  • Понты.
  • Реалистичность изображения(спорно).
  • Изначально глубокая передача цветов, но это меркнет на фоне новых подсветок LED и OLED, которые уже передают лучше цвета.

Недостатки

  • Цена на устройства с такими экранами и наличием функций выше, чем аналог с ЖК.
  • Выше энергопотребление.
  • Из-за своего строения пиксели быстро выгорают при долго включенной статичной картинке. Как следствие – использование только для просмотра динамичных сцен.
  • Большие пиксели, вследствие чего у относительно маленьких экранов плохое разрешение.
  • Наименьшая ширина дисплеев больше наименьшей ширины ЖК.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами(сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газами - неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси) с добавлением ртути.

Принцип работы

  1. инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочения.
  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Вывод: Если вы страшный мажор, и не собираетесь даже смотреть на этот телевизор. Покупайте самый большой размер дисплея в наличии в магазине и смело бабахайте свой домашний кинотеатр, затем сказать, что у вас всё это есть дома и пригласить кучу друзей, которые также туда не взглянут. Правда, вы мой дорогой читатель из-за своего кошелька должны придерживаться голоса разума и брать телевизор или монитор только с ЖК экраном.



Понравилась статья? Поделиться с друзьями: