Сравнение интерфейсов SCSI, SAS и SATA. В чем разница между SATA, SAS и SSD дисками Версии sas

Данная статья призвана объяснить разницу между типами жестких дисков и помочь вам определиться с выбором при покупке выделенного сервера.

SATA - Serial ATA

В настоящее время SATA диски используются на большинстве персональных компьютеров в мире и на бюджетных конфигурациях серверного оборудования. По сравнению с SAS и SSD дисками скорость чтения и записи SATA дисков заметно ниже, но их выбирают из-за больших объемов хранимой информации.

Диски SATA хорошо подойдут для игровых серверов, работа которых не требует частой записи и чтения информации. Также SATA диски целесообразно использовать для следующих целей:

  • потоковые операции, например, кодирование видео;
  • хранилища данных;
  • системы резервного копирования;
  • объемные, но не нагруженные файл-серверы.

SAS - Serial Attached SCSI

Диски SAS изначально разработаны с учетом корпоративных и промышленных нагрузок, что положительно сказывается на их производительности. Скорость вращения SAS дисков вдвое выше, чем у SATA, поэтому их стоит выбирать для задач, которые чувствительны к скорости и требуют многопоточного доступа. Также диски SAS (в отличие от SSD) могут обеспечить надежную и многократную перезапись данных.

Для организации хостинга диски SAS будут оптимальны, так как они могут обеспечить высокую надежность хранения данных. Помимо этого жесткие диски SAS хорошо подойдут для реализации следующих задач:

  • cистемы управления базами данных (СУБД);
  • WEB-серверы с высокой нагрузкой;
  • распределенные системы;
  • системы, обрабатывающие большое количество запросов - терминальные серверы, 1С серверы.

Единственным недостатком SAS дисков (как и у SSD) является их небольшой объем и высокая цена.

SSD - Solid-state Drive

В последнее время SSD становятся все более и более популярными. SSD не использует для записи магнитные диски, а содержит только микросхемы энергонезависимой памяти, аналогичные тем, что используются в USB-флешках.

В SSD дисках нет движущихся частей, что обеспечивает высокую механическую стойкость, сниженное энергопотребление и высокую скорость работы. В данный момент SSD диски обеспечивают максимально возможную скорость чтения и записи, что позволяет использовать их для любых высоконагруженных проектов.

Главным минусом SSD дисков является то, что они ограничены по объему информации, которую можно перезаписать на диск. Соответственно, если в день ваша система перезаписывает более 20 Гб данных, будьте готовы через некоторое время сменить SSD диск. Кстати цена таких дисков выше, чем у обоих вышеперечисленных типов.

Многие современные CMS при генерации страницы зачастую требуют одновременного обращения к нескольким файлам на диске. Именно для работы с подобными системами SSD диски - идеальный выбор. Использование SSD дисков для нагруженных сайтов является гарантией того, что вы получите максимум скорости чтения данных.

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.

На протяжении более 20 лет параллельный шинный интерфейс был самым распространенным протоколом обмена данных для большинства систем хранения цифровых данных. Но с ростом потребности в пропускной способности и гибкости систем стали очевидными недостатки двух самых распространенных технологий параллельного интерфейса: SCSI и ATA. Отсутствие совместимости между параллельными интерфейсами SCSI и ATA - разные разъемы, кабели и используемые наборы команд - повышает стоимость содержания систем, научных исследований и разработок, обучения и квалификации новых продуктов.

На сегодняшний день параллельные технологии пока еще устраивают пользователей современных корпоративных систем с точки зрения производительности, но растущие потребности в более высоких скоростях, более высокой сохранности данных при передаче, уменьшении физических размеров, а также в более широкой стандартизации ставят под сомнение способность параллельного интерфейса без излишних затрат поспевать за быстро растущей производительностью ЦПУ и скоростью накопителей на жестких дисках. Кроме того, в условиях жесткой экономии, предприятиям становится все труднее изыскивать средства на разработку и содержание разнотипных разъемов задних панелей серверных корпусов и внешних дисковых массивов, проверку на совместимость разнородных интерфейсов и инвентаризацию разнородных соединений для выполнения операций «ввод/вывод».

Использование параллельных интерфейсов также связано с рядом других проблем. Параллельная передача данных по широкому шлейфовому кабелю подвержена перекрестным наводкам, которые могут создавать дополнительные помехи и приводить к ошибкам сигнала - чтобы не угодить в эту ловушку, приходится снижать скорость сигнала или ограничивать длину кабеля, или делать и то, и другое. Терминация параллельных сигналов также связана с определенными трудностями - приходится завершать каждую линию в отдельности, обычно эту операцию выполняет последний накопитель, чтобы не допустить отражения сигнала в конце кабеля. Наконец, большие кабели и разъемы, применяемые в параллельных интерфейсах, делают эти технологии малопригодными для новых компактных вычислительных систем.

Представляем SAS и SATA

Последовательные технологии, такие как Serial ATA (SATA) и Serial Attached SCSI (SAS), позволяют преодолеть архитектурные ограничения, присущие традиционным параллельным интерфейсам. Свое название эти новые технологии получили от способа передачи сигнала, когда вся информация передается последовательно (англ. serial), единым потоком, в отличие от множественных потоков, которые используются в параллельных технологиях. Главное преимущество последовательного интерфейса заключается в том, что, когда данные передаются единым потоком, они движутся гораздо быстрее, чем при использовании параллельного интерфейса.

Последовательные технологии объединяют многие биты данных в пакеты и затем передают их по кабелю со скоростью, в 30 раз превышающей скорость параллельных интерфейсов.

SATA расширяет возможности традиционной технологии ATA, обеспечивая передачу данных между дисковыми накопителями со скоростью 1,5 Гбайт в секунду и выше. Благодаря низкой стоимости в пересчете на гигабайт емкости диска SATA будет оставаться господствующим дисковым интерфейсом в настольных ПК, серверах начального уровня и сетевых системах хранения информации, где стоимость является одним из главных соображений.

Технология SAS, преемница параллельного интерфейса SCSI, опирается на проверенную временем высокую функциональность своего предшественника и обещает значительно расширить возможности современных систем хранения данных масштаба предприятия. SAS обладает целым рядом преимуществ, не доступных традиционным решениям в области хранения данных. В частности, SAS позволяет подключать к одному порту до 16 256 устройств и обеспечивает надёжное последовательное соединение «точка-точка» со скоростью до 3 Гб/с.

Кроме того, благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel). Это очень полезная функция в тех случаях, когда требуется разместить большое количество избыточных накопителей в компактной системе, например, в низкопрофильном блэйд-сервере.

SAS улучшает адресацию и подключение накопителей благодаря аппаратным расширителям, которые позволяют подключить большое количество накопителей к одному или нескольким хост контроллерам. Каждый расширитель обеспечивает подключение до 128 физических устройств, каковыми могут являться другие хост контроллеры, другие SAS расширители или дисковые накопители. Подобная схема хорошо масштабируется и позволяет создавать топологии масштаба предприятия, с лёгкостью поддерживающие многоузловую кластеризацию для автоматического восстановления системы в случае сбоя и для равномерного распределения нагрузки.

Одно из важнейших преимуществ новой последовательной технологии заключается в том, что интерфейс SAS будет также совместим с более экономичными накопителями SATA, что позволит проектировщикам систем использовать в одной системе накопители обоих типов, не тратя дополнительные средства на поддержку двух разных интерфейсов. Таким образом интерфейс SAS, представляя собой следующее поколение технологии SCSI, позволяет преодолеть существующие ограничения параллельных технологий в том, что касается производительности, масштабируемости и доступности данных.

Несколько уровней совместимости

Физическая совместимость

Разъем SAS является универсальным и по форм-фактору совместим с SATA. Это позволяет напрямую подключать к системе SAS как накопители SAS, так и накопители SATA и таким образом использовать систему либо для жизненно важных приложений, требующих высокой производительности и оперативного доступа к данным, либо для более экономичных приложений с более низкой стоимостью в пересчете на гигабайт.

Набор команд SATA является подмножеством набора команд SAS, что обеспечивает совместимость устройств SATA и контроллеров SAS. Однако SAS накопители не могут работать с контроллером SATA, поэтому они снабжены специальными ключами на разъёмах, чтобы исключить вероятность неверного подключения.

Кроме того, сходные физические параметры интерфейсов SAS и SATA позволяют использовать новую универсальную заднюю панель SAS, которая обеспечивает подключение как накопителей SAS, так и накопителей SATA. В результате отпадает необходимость в использовании двух разных задних панелей для накопителей SCSI и ATA. Подобная конструктивная совместимость выгодна как производителям задних панелей, так и конечным пользователям, ведь при этом снижаются затраты на оборудование и проектирование.

Совместимость на уровне протоколов

Технология SAS включает в себя три типа протоколов, каждый из которых используется для передачи данных разных типов по последовательному интерфейсу в зависимости от того, к какому устройству осуществляется доступ. Первый - это последовательный SCSI протокол (Serial SCSI Protocol SSP), передающий команды SCSI, второй - управляющий протокол SCSI (SCSI Management Protocol SMP), передающий управляющую информацию на расширители. Третий - туннельный протокол SATA (SATA Tunneled Protocol STP), устанавливает соединение, которое позволяет передавать команды SATA. Благодаря использованию этих трех протоколов интерфейс SAS полностью совместим с уже существующими SCSI приложениями, управляющим ПО и устройствами SATA.

Такая мультипротокольная архитектура, в сочетании с физической совместимостью разъемов SAS и SATA, делает технологию SAS универсальным связующим звеном между устройствами SAS и SATA.

Выгоды совместимости

Совместимость SAS и SATA дает целый ряд преимуществ проектировщикам систем, сборщикам и конечным пользователям.

Проектировщики систем могут благодаря совместимости SAS и SATA использовать одни и те же задние панели, разъемы и кабельные соединения. Модернизация системы с переходом от SATA к SAS фактически сводится замене дисковых накопителей. Напротив, для пользователей традиционных параллельных интерфейсов переход от ATA к SCSI означает замену задних панелей, разъемов, кабелей и накопителей. К числу других экономичных преимуществ совместимости последовательных технологий следует отнести упрощенную процедуру сертификации и управление материальной частью.

VAR реселлеры и сборщики систем получают возможность легко и быстро изменять конфигурацию заказных систем, просто устанавливая в систему соответствующий дисковый накопитель. Отпадает необходимость работать с несовместимыми технологиями и использовать специальные разъемы и разные кабельные соединения. Более того, дополнительная гибкость в том, что касается выбора оптимального соотношения цены и производительности, позволит VAR реселлерам и сборщикам систем лучше дифференцировать свои продукты.

Для конечных пользователей совместимость SATA и SAS означает новый уровень гибкости в том, что касается выбора оптимального соотношения цены и производительности. Накопители SATA станут наилучшим решением для недорогих серверов и систем хранения данных, в то время как накопители SAS обеспечат максимальную производительность, надежность и совместимость с управляющим ПО. Возможность модернизации с переходом от накопителей SATA к накопителям SAS без необходимости приобретать для этого новую систему значительно упрощает процесс принятия решения о покупке, защищает инвестиции в систему и снижает общую стоимость владения.

Совместная разработка протоколов SAS и SATA

20 января 2003 года Ассоциация производителей SCSI Trade Association (STA) и Рабочая группа Serial ATA (SATA) II Working Group объявили о сотрудничестве в целях обеспечения совместимости технологии SAS с дисковыми накопителями SATA на системном уровне.

Сотрудничество этих двух организаций, а также совместные усилия поставщиков систем хранения данных и комитетов по стандартам направлены на выработку еще более точных директив в области совместимости, что поможет проектировщикам систем, ИТ специалистам и конечным пользователям осуществлять еще более тонкую настройку своих систем с целью достижения оптимальной производительности и надёжности и снижения общей стоимости владения.

Спецификация SATA 1.0 была утверждена в 2001 году, и сегодня на рынке представлены продукты SATA от различных производителей. Спецификация SAS 1.0 была утверждена в начале 2003 года, а первые продукты должны появиться на рынке в первой половине 2004 года.

Что такое SAS, предысторияПришло время признать очевидный факт: стандарт SCSI, даже в виде самых современных реализаций вроде Ultra320 SCSI, исчерпал свои возможности. По крайней мере, дальнейшее масштабирование его производительности если теоретически и возможно, то будет обходиться весьма недешево. Ситуация, сложившаяся с этим весьма почитаемым стандартом, особенно удручающе выглядит на фоне бурного развития всей компьютерной техники и архитектуры и топологии систем хранения данных в частности.

Два ключевых фактора, которые подталкивают производителей совершенствовать интерфейсы винчестеров - это растущая производительность систем хранения данных при большом количестве обслуживаемых транзакций и скорость выборки данных из крупных библиотек. Разумеется, "свято место пусто не бывает", и появление интерфейсов вроде оптического FCAL или последовательного SATA в какой-то степени позволило избавиться от "узких мест" и внести разнообразие в список архитектур систем хранения данных. Однако, привыкшие к возможностям SCSI пользователи по-прежнему остаются поклонниками этого стандарта. Тем более, что в его развитие вложены очень и очень большие деньги.

Вот такие предпосылки сложились к моменту зарождения нового индустриального стандарта, названного последовательно-подключенный SCSI - Serial-Attached SCSI , или просто SAS .


Ради справедливости стоит отметить, что новый стандарт появился не вдруг и не сразу: официальному анонсу технологии SAS, состоявшейся 28 января 2004 года предшествовала серьезная работа команды разработчиков из разных компаний и промышленных групп - SCSI Trade Association (STA) и International Committee for Information Technology Standards (INCITS), под эгидой American National Standards Institute (ANSI). Впервые о новом стандарте заговорили в декабре 2001 года, когда совет директоров SCSI Trade Association (STA) проголосовал за определение спецификаций Serial Attached SCSI. Далее 2 мая 2002 года разработка стандарта была передана созданному специально для поддержки, развития и продвижения SAS комитету T10 при INCITS (InterNational Committee for Information Technology Standards), а первые черновые спецификации SAS были опубликованы в середине 2003 года.

Итак, самое главное, на что стоит опираться при попытке сформулировать определение стандарта SAS: Serial-Attached SCSI является логичным и естественным последовательным расширением технологии параллельного интерфейса SCSI, используемого для подключения периферии к компьютерам .
От этого, для начала, и оттолкнемся.

Назначение SAS

Для определения назначения стандарта SAS и его места среди современных периферийных интерфейсов обратимся к формулировкам, изложенным в "FAQ по Serial Attached SCSI" на сайте T10.

Интерфейс Serial Attached SCSI является продуктом логической эволюции современных интерфейсов и разработан для применения в промышленных центрах сбора и хранения данных. Стандарт SAS опирается на электрические и физические характеристики интерфейса Serial ATA, обеспечивает масштабируемость, производительность, надежность и управляемость данных в серверах и подсистемах хранения данных. Архитектурная схожесть с SATA не мешает SAS обладать наиболее востребованными чертами SCSI, в то же время избавляясь от его недостатков: крупных разъемов, малой длины соединительных кабелей, ограниченной производительности и адресации.

В широком смысле понимания SAS - это своеобразный полнодуплексный SATA с поддержкой двух портов, больших возможностей адресации, расширенной надежностью, производительностью и логической совместимостью со SCSI. Интерфейс Serial ATA, с другой стороны, можно рассматривать как упрощенное подмножество Serial Attached SCSI для работы в простых системах без критических требований к надежности и производительности. Это совсем не значит, что устройства Serial Attached SCSI не могут использоваться в обычных рабочих станциях и настольных ПК, необходимо лишь наличие соответствующего хост-адаптера.

По сути, Serial Attached SCSI - это SCSI, но не с привычной параллельной, а с point-to-point (точка-точка) последовательной архитектурой, с непосредственным подключением контроллера к накопителям. SAS поддерживает до 128 накопителей различных типов и размеров, совместно подключенных более тонкими и длинными (нежели в случае SCSI) кабелями. В то время как интерфейс SCSI "проталкивает" по своим проводам данные со скоростью порядка 20 МБ/с, а полудуплексный SATA первого поколения - 1.5 ГБ/с в одном направлении в единицу времени, полнодуплексный сигнальный последовательный интерфейс SAS с поддержкой "горячего" подключения в нынешней реализации обеспечивает обмен данными на скорости до 3.0 Гб/с на порт.

Ключевым отличием SAS от SCSI является возможность подключения SAS-накопителей одновременно к двум различным портам, каждый из которых представляет различные домены SAS. Можете себе представить, насколько значительным образом это отражается на надежности хранения данных и отказоустойчивости системы. К тому же, "коммутаторная" природа архитектуры SAS позволяет в теории подключать "покаскадно" тысячи накопителей (до 16384 приводов без снижения производительности!), что делает масштабируемость таких систем теоретически неограниченной. Основные отличия технологий SCSI и SAS приведены в таблице ниже.

Спецификации разъемов и кабелей SAS

Одной из ключевых особенностей интерфейса SAS при его разработке была определена возможность значительного наращивания скорости обмена данными. Разрабатываемые сейчас спецификации следующего поколения SAS подразумевают обмен данными со скоростью до 6.0 ГБ/с при полной совместимости с первым поколением SAS-устройств. Следующее за этим поколение всерьез пока не рассматривалось, но поговаривают о возможности достижения скорости обмена данными до 12 ГБ/с.


При разработке разъемов под устройства SAS был заложен перспективный рост скорости обмена данными, и одновременно с этим учтен опыт миниатюризации, просматриваемый в спецификациях SATA. Специфика разъема заключается в размещении второго порта данных, ибо каждый из портов SAS-устройства размещается в различных доменах и служит для организации независимых путей от одного SAS-устройства к другому для обеспечения безаварийной работы. В случае, если один из накопителей в цепочке выходит из строя, это никоим образом не отражается на работе других устройств. Таким образом на свет появился дизайн разъема для периферии с интерфейсом SAS, по сути имеющий архитектурное сходство с 68-контактными разъемами для накопителей с классическим параллельным интерфейсом SCSI или SCA-2, но в то же время, по аналогии с SATA, поддерживающей "горячее подключение" и надежный контакт.

Кабельная система SAS имеет гораздо более компактные размеры, нежели аналогичная для параллельных интерфейсов ATA и SCSI, что обеспечивает меньшую путаницу и лучший обдув воздухом компонентов внутри системного корпуса. Типичная длина интерфейсных кабелей SAS для применения, например, в рабочих станциях, не превышает 1 м, максимальная длина такого кабеля может достигать 8 м. Теоретически это сравнимо с длиной кабеля для интерфейса SCSI, поскольку некоторые современные устройства допускают соединение между хост-контроллером и SCSI-периферией на расстоянии более 8 м. Однако, в случае нужды расстояние между SAS-устройствами может быть значительно увеличено за счет так называемых SAS-экспандеров - своеобразных "станций подкачки трубопровода".


Интересно отметить, что при разработке спецификаций SAS рабочая группа сразу же приняла во внимание необходимость определения параметров разъемов и кабелей не только для внутренних, но и для внешних подключений, аналогичных современным SCSI-вариантам вроде "сервер - JBOD система". Для интерфейса SATA принятие таких спецификаций было отложено "на потом", и, как результат, разработка External SATA до сих пор еще не закончена.

Что касается внешних SAS-подключений, за основу было принято предложение компании Infiniband, где внешние разъемы и кабельная система рассчитаны на 4 устройства и в то же время обеспечивают производительность первого поколения внешних SAS-соединений на уровне 1.2 ГБ/с в каждом направлении, то есть до 2400 МБ/с в полнодуплексном режиме! Согласитесь, более чем впечатляюще для внешнего интерфейса.

Системная топология SAS

Использование конфигураций класса "точка-точка" позволяет получить высокую пропускную способность, однако, обратной стороной медали является организация специфической топологии, где при взаимодействии инициирующих (хост) устройств и периферии подразумевается поддержка более чем двух устройств "в связке". При разработке стандарта SAS в спецификации сразу же было заложено существование недорогих экспандеров, позволяющих создавать системы с количеством инициирующих хостов более одного, с поддержкой более чем одного периферийного устройства.

Еще одна важная цель, которую ставили перед собой разработчики нового стандарта - уйти от ограничения классического SCSI, подразумевающего не более 16 устройств в одной цепочке. В результате каждая SAS-система при применении соответствующего количества экспандеров способна поддерживать адресацию до 16256 устройств в едином SAS-домене. Обязательно стоит отметить гибкость конфигурации SAS-экспандеров: их спецификации подразумевают создание гетерогенных систем, где в качестве периферийных накопителей могут уживаться как SAS, так и SATA устройства. Согласитесь, очень удобно, особенно, при формировании бюджетных систем хранения данных или устройств с закладываемым на перспективу масштабированием.



Иллюстрация к принципу организации SAS домена
максимальной емкости


Обратите внимание на иллюстрацию выше: темно-зеленый модуль в центре представляет собой тот самый экспандер-коммутатор (fanout expander). Такой "коммутационный" экспандер может присутствовать в одном SAS-домене в единичном количестве и объединять собой до 128 SAS-устройств. Однако, не стоит под SAS-устройствами понимать исключительно жесткие диски, поскольку здесь подразумевается любая возможная комбинация из так называемых "периферийных экспандеров" (edge expanders, светло-зеленые модули), инициирующих устройств и собственно накопителей. Периферийные экспандеры, в свою очередь, могут также поддерживать до 128 SAS-устройств, однако, к ним можно подключить уже не более одного дополнительного экспандера. Голубыми модулями на схеме отмечены инициаторы (хосты), а коричневыми цилиндрами - SAS или SATA приводы.

Протоколы SAS

Создание новой топологии и новых интерфейсов привело к созданию совершенно нового определения методики адресации всех возможных портов в SAS-домене. С параллельным SCSI, конечно же, все проще, поскольку адресация всех устройств домена предопределена на аппаратном уровне.

В результате рабочей группой по развитию протокола SAS было принято решение выбрать в качестве идентификаторов уникальные в глобальном плане 64-битные имена - WWN (WorldWide Name) для всех типов SAS-устройств. Опять же, ничего нового под Луной, именно такая адресация давно используется при наименовании Fibre Channel устройств.


Таким образом, в момент включения питания все устройства, объединенные в единое SAS-пространство, обмениваются друг с другом своими WWN, и только после этого комплект SAS-устройств становится "осмысленной" SAS-системой. Добавление в SAS-систему нового устройства (под добавлением в этом случае подразумевается как раз "горячее подключение") или его изъятие из системы приводит к появлению извещения, которое оповещает о событии все инициаторы и позволяет подстроить систему под новую конфигурацию. На экспандеры, в свою очередь, ложится обязанность "выдачи" WWN всем SATA-устройствам системы, как в случае ее включения, так и в случае "горячего" подключения нового устройства. По завершению процесса инициализации системы, SATA устройства взаимодействуют с помощью SATA протоколов, для SAS-устройств используется SAS-протокол, описанный в других SCSI-стандартах типа SPI (SCSI Parallel Interface).

Дальше все проще: обмен командами, данными, статусами и другой информацией между SAS-устройствами производится пакетами, спецификации которых очень схожи на характеристики пакетов для обмена информацией при работе с параллельными SCSI или Fibre Channel устройствами. Формат пакетов данных SAS, называемых "фреймами", особенно схож со спецификациями Fibre Channel: каждый из них состоит из блоков командных дескрипторов - CDB (command descriptor block) и других SCSI-конструкций, определяемых другими стандартами SCSI, вроде SCSI Primary Command Set или SCSI Block Command. Вот Вам еще одна выгода от стандарта SAS: использование SCSI-подобного протокола и архитектуры позволяет объединять SAS-конструкции с другими системами хранения и обработки данных с архитектурой Infiniband, iSCSI или Fibre Channel, которые, по сути, также являются SCSI-объектами.

Протокол SAS содержит четыре традиционных уровня: физический (phy layer), коммуникационный (link layer), уровень портов (port layer) и транспортный уровень (transport layer). Объединение четырех уровней в каждом порте SAS означает, что программы и драйверы, используемые для работы с параллельными портами SCSI, могут с равным успехом использоваться и для обслуживания портов SAS, лишь с незначительной модификацией.



Архитектура SAS


Уровни приложений, включающие драйверы и собственно приложения, создают специфические задания для транспортного уровня, который, в свою очередь, инкапсулирует команды, данные, статусы и пр. в SAS-фреймы и перепоручает их передачу уровню портов. Разумеется, транспортный уровень также отвечает за прием SAS-фреймов и с уровря портов, дизассемблирование принятых фреймов и передачу контента уровню приложений.

Уровень портов SAS отвечает за обмен пакетами данных с коммуникационным уровнем (link layer) в порядке установления соединений, а также за выбор физического уровня, с помощью которого будет осуществляться передача пакетов одновременно на несколько устройств. Под физическим уровнем SAS подразумевается соответствующее аппаратное окружение - трансиверы и модули кодирования, которые подключаются к физическому интерфейсу SAS и отправляют сигналы по проводным цепям.





Кстати, напомню, на физическом уровне соединения в случае последовательного интерфейса SAS представляют собой полнодуплексные дифференциальные пары цепей, которые также могут объединяться для увеличения производительности (ну прямо как PCI Express) в "широкие" порты. Соответственно, каждое устройство может иметь более одного порта, и каждый из них может быть сконфигурирован как "узкий" или "широкий". Интерфейсы хостов и экспандеров могут быть составлены из нескольких портов, при этом адрес каждого хоста доступен каждому периферийному устройству, а пропускная способность при этом суммируется. Организация множества путей прохождения данных за счет наличия "широких" портов подразумевает параллельное исполнение команд и соответствующее снижение потерь времени на ожидание очереди.

Заключение

Изложенный материал представляет собой лишь краткое введение в принципы построения архитектуры интерфейса SAS и особенности реализации этого стандарта. Более детальное рассмотрение спецификаций интерфейса потребует, по всей видимости, выпуска целого цикла статей на эту тему. Не исключено, что именно так оно и будет, благо, начало массового внедрения интерфейса уже не за горами, и количество прикладных вопросов по реализации SAS-систем со временем только вырастет.

Главное определение SAS, которое, по-моему, не стоит забывать - новый последовательный интерфейс Serial Attached SCSI был разработан для нужд широкого списка систем хранения данных корпоративного уровня, однако, все же он представляет собой интерфейс "близкого действия" и ни в коем случае не призван заменить собой какие-либо сетевые интерфейсы, не надо "покупаться" на схожую реализацию архитектуры "точка-точка".

При всей своей "заточенности" для работы в крупных и чуть ли не бесконечно масштабируемых системах хранения данных, интерфейс Serial Attached SCSI подразумевает полную совместимость с относительно недорогими накопителями Serial ATA, что позволяет конструировать вполне доступные системы даже в масштабе малых предприятий. В то же время поддержка 2-портовых Serial Attached SCSI приводов позволяет обеспечить производительность уровня, который и не снился нынешним системам на SCSI-приводах.

Для тех, кто готов самостоятельно окунуться в изучение особенностей Serial Attached SCSI, мы приводим в заключение список сайтов, где расположены учебные и стандартообразующие документы.

ресурсы сайта компании Adaptec
ресурсы сайта компании Maxtor
ресурсы сайта компании Seagate

T10 :

Serial Attached SCSI –
SCSI Architecture Model – 3 (SAM-3)
SCSI Primary Commands – 3 (SPC-3)
SCSI Block Commands – 2 (SBC-2)
SCSI Stream Commands – 2 (SSC-2)
SCSI Enclosure Services – 2 (SES-2)

Спецификации разъемов SAS :

SFF 8482 (internal backplane/drive)
SFF 8470 (external 4-wide)
SFF 8223, 8224, 8225 (2.5", 3.5", 5.25" form factors)
SFF 8484 (internal 4-wide)

Спецификации Serial ATA :

Serial ATA II: Extensions to Serial ATA 1.0
Serial ATA II: Port Multiplier
Serial ATA II: Port Selector
Serial ATA II: Cables and Connectors Volume 1

Дополнительные ресурсы:

International Committee for Information Technology Standards
T11 (стандарты Fibre Channel)
SCSI Trade Association
SNIA (Storage Networking Industry Association)

Интерфейс SAS.

Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA , устройств, управляемых набором команд SCSI . Обладая обратной совместимостью с SATA , он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.

Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).

Рис. 1.

Некоторые команды сопровождаются дополнительно "блоком параметров", который следует за блоком дескриптора команды, но передается уже как "данные".

Типичная система с интерфейсом SAS состоит из следующих компонентов:

1) Инициаторы. Инициатор - это устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов.

2) Целевые устройства . Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом.

3) Подсистема доставки данных . Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS.

3.1) Расширители. Расширители SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS, например, позволяет соединить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

SAS поддерживает подключение устройств с интерфейсом SATA. SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий. SAS использует команды SCSI для управления и обмена данными с целевыми устройствами. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом. В отличии от SCSI, SAS не нуждается в терминации шины пользователем. Интерфейс SCSI использует общую шину - все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. В SCSI скорость передачи информации по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка. SAS поддерживает очень большое количество устройств, в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине. SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с). Такая скорость может быть достигнута при передаче информации на каждом соединении, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.

SATA использует набор команд ATA и поддерживает жёсткие диски и накопители на оптических дисках, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры и принтеры. SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN идентификаторами (World Wide Name). Устройства SATA (версии 1) не поддерживали очередей команд, в то время как устройства SAS поддерживают теггированные очереди команд. Устройства SATA с версии 2 поддерживают Native Command Queuing (NCQ).

Аппаратура SAS поддерживает связь с целевыми устройствами по нескольким независимым линиям , что повышает отказоустойчивость системы (интерфейс SATA такой возможности не имеет). В то же время, интерфейс SATA версии 2 использует дубликаторы портов для достижения аналогичной возможности.

SATA преимущественно используется в некритических приложениях, например в домашних компьютерах. Интерфейс SAS, благодаря своей надёжности, может быть использован в критически важных серверах. Выявление ошибок и обработка ошибочных ситуаций определено в SAS гораздо лучше чем в SATA. SAS считают надмножеством SATA, и не конкурирует с ним.

Разъёмы SAS гораздо меньше разъёмов традиционного параллельного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей типоразмером 2,5 дюйма. SAS поддерживает передачу информации со скоростью от 3 Гбит/с до 10 Гбит/с. Существует несколько вариантов разъёмов SAS:

SFF 8482 - вариант, совместимый с разъёмом интерфейса SATA;

SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств; позволяет подключить до 4 устройств;

SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств; поддерживает скорость 10 Гбит/с;

SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств; поддерживает скорость 10 Гбит/с.

Разъём SFF 8482 позволяет подключать устройства SATA к контроллерам SAS, что избавляет от необходимости устанавливать дополнительный контроллер SATA только потому, что необходимо, к примеру, подключить устройство для записи дисков DVD. Наоборот, устройства SAS не могут подключаться к интерфейсу SATA, и на них устанавливается разъём, предотвращающий их подключение к интерфейсу SATA.



Понравилась статья? Поделиться с друзьями: