Стандарт 802.11 bgn какой лучше. Стандарты Wi-Fi и их отличия друг от друга

Стандарты беспроводных сетей

Сегодня мы рассмотрим все существующие стандарты IEEE 802.11 , которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые - на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень).
Стандарт IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE.
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д..
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы.

Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;
  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;
  • высокая скорость передачи;
  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;
  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;
  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM .

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь* . Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е, разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol) , который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с .
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные -1;2;5,5;6; 11; 12 и 24 Мбит/с;
  • возможные - 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM , а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов (интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) - алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;
  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;
  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) - алгоритм шифрования данных;
  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) - алгоритм шифрования данных;
  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) - алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.

На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

IEEE 802.11n

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Расширение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация.

При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей.

Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн.

Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Стандарт IEEE 802.11ac

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac подтвердили рабочей группой (TGac) в прошлом году. В то время как ратификация Wi-Fi Alliance ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE . Мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi 802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса
  • Высокая плотность модуляции до 256 QAM.
  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.
  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:

802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac. Потребуется тестирование оборудования, способного обрабатывать 80 или 160 MHz для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz , в широком диапазоне генератор волновых сигналов произвольной формы (AWG). Такие как Agilent 81180A, 8190A можно использовать для создания аналоговых I/Q сигналов.

Эти сигналы можно применить к внешнему I/Q. Как входы векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz в отдельных MCG или ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:

MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны. Которые торчат из них, — эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов можно использовать для представления о производительности устройств MIMO. И оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:

Усилитель Линейности является характеристикой и усилителем. С помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение. Которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями

Хотя стандарт 802.11n используется уже в течение многих лет. Но до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов. Таких как 802.11b и 802.11g, правда их реально мало. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в,

Способы увеличения скорости соединения и стабильности беспроводной сети Wi-Fi при использовании стандарта IEEE 802.11n

Многие современные устройства, которые мы используем (смартфон, планшет, ноутбук, роутер, телевизор), умеют работать с беспроводными сетями Wi-Fi. Самым распространенным на данный момент является стандарт IEEE 802.11n.

У пользователей периодически возникают вопросы по скорости и стабильности работы устройств по Wi-Fi. Самые распространенные из них:

  • Почему в статусе беспроводного соединения отображается максимальная скорость подключения, а реальная скорость передачи данных значительно ниже?
  • Почему при подключении беспроводного адаптера с поддержкой стандарта 802.11n скорость подключения 54 Мбит/с или ниже?
  • Где обещанная скорость 300 Мбит/с (или 150 Мбит/с) при подключении беспроводных устройств на стандарте 802.11n?
  • Как правильно настроить устройства беспроводной сети, чтобы они работали эффективно, стабильно и по возможности на максимальных скоростях, используя все преимущества стандарта IEEE 802.11n?

1. Максимальная скорость передачи данных и скорость подключения (канальная скорость) - разные понятия.

Начнем с того, что многие пользователи ошибочно ориентируются на скорость подключения в мегабитах в секунду, которое отображается в строке Скорость (Speed) на закладке Общие (General) в окне Состояние (Status) беспроводного соединения в операционной системе Windows.

Неверно думать, что это значение показывает реальную пропускную способность конкретного сетевого соединения. Данная цифра отображается драйвером беспроводного адаптера и показывает, какая скорость подключения на физическом уровне используется в настоящее время в рамках выбранного стандарта, то есть операционная система сообщает лишь о текущей (мгновенной) физической скорости подключения 300 Мбит/c (её называют ещё канальной скоростью), но реальная пропускная способность соединения при передаче данных может быть значительно ниже. Реальная скорость передачи данных зависит от многих факторов, в частности от настроек точки доступа 802.11n, числа одновременно подключенных к ней клиентских беспроводных адаптеров и др. Разница между скоростью подключения, которое показывает Windows, и реальными показателями объясняется прежде всего большим объемом служебных данных, потерями сетевых пакетов в беспроводной среде и затратами на повторную передачу.

Чтобы получить более или менее достоверное значение реальной скорости передачи данных в беспроводной сети, можно использовать один из указанных ниже способов:

  • Запустите в Windows копирование большого файла и затем посчитайте скорость, с которой был передан этот файл, используя размер файла и время передачи (Windows 7 при длительном копировании в дополнительных сведениях окна рассчитывает достаточно достоверную скорость).
  • Используйте специальные утилиты, например LAN Speed Test или NetMeter для измерения пропускной способности.
  • Администраторам сетей можно порекомендовать программу Iperf (кроссплатформенная консольная клиент-серверная программа).

Скачать:

2. Преимущества стандарта 802.11n работают только для адаптеров 802.11n.

Стандарт 802.11n использует различные технологии, включая MIMO, для достижения более высокой пропускной способности, но они эффективны только при работе клиентов, поддерживающих спецификации 802.11n.Нужно помнить, что использование беспроводной точки доступа стандарта 802.11n не повысит производительность работы уже существующих клиентов стандарта 802.11b/g.

3. При тестах скорости Wi-Fi необходимо отключать все устройства в сети, кроме испытуемых (особенно устаревших стандартов).

В беспроводной сети на базе точки доступа 802.11n можно использовать устройства предыдущих стандартов. Точка доступа 802.11n может одновременно работать и с 802.11n-адаптерами, и со старыми устройствами стандарта 802.11g и даже 802.11b. Стандартом 802.11n предусмотрены механизмы поддержки устаревших стандартов (legacy-механизмы). Скорость работы с клиентами 802.11n снижается (на 50-80%) только тогда, когда более медленные устройства активно передают или принимают данные. Для достижения максимальной производительности (или, по крайней мере, ее проверки) беспроводной сети 802.11n рекомендуется использовать в сети клиенты только этого стандарта.

4. Почему при подключении адаптера 802.11n скорость соединения только 54 Мбит/с или ниже?

В большинстве устройств стандарта 802.11n будет наблюдаться снижение пропускной способности до 80% при использовании устаревших методов обеспечения безопасности WEP или WPA/TKIP. В стандарте 802.11n установлено, что высокая производительность (свыше 54 Мбит/с) не сможет быть реализована, если используется один из указанных выше методов. Исключение составляют лишь устройства, которые не являются сертифицированными под стандарт 802.11n.

Если вы не хотите получить снижение скорости, используйте только метод безопасности беспроводной сети WPA2 с алгоритмом AES (стандарт безопасности IEEE 802.11i).
Внимание! Использование открытой (незащищенной) сети небезопасно!

В некоторых случаях, при использовании Wi-Fi-адаптера стандарта 802.11n и беспроводной точки доступа стандарта 802.11n, происходит подключение только на стандарте 802.11g. Это также может происходить по причине того, что в точке доступа по умолчанию в настройках безопасности беспроводной сети предустановлена технология WPA2 с протоколом TKIP. Опять же рекомендация: в настройках WPA2 используйте именно алгоритм AES вместо протокола TKIP, и и тогда подключение к точке доступа будет происходить с использованием стандарта 802.11n.

Другая возможная причина соединения только на стандарте 802.11g заключается в том, что в настройках точки доступа используется режим автоопределения (802.11b/g/n). Если вы хотите установить соединение на стандарте 802.11n, то не используйте режим автоопределения 802.11b/g/n, а вручную установите использование только 802.11n. Но помните, что в этом случае клиенты 802.11b/g не смогут подключиться к беспроводной сети, кроме клиентов с поддержкой 802.11n.

5. Убедитесь, что на точке доступа и на адаптере поддерживается и включен режим WMM.

Для получения скорости свыше 54 Мбит/с должен быть включен режим WMM (Wi-Fi Multimedia).
В спецификации 802.11n требуется поддержка в устройствах стандарта 802.11e (Качество обслуживания QoS для улучшения работы беспроводной сети) с целью использования режима с высокой пропускной способностью HT (High Throughput), т.е. скорости свыше 54 Мбит/с.

Поддержка режима WMM требуется для устройств, которые будут сертифицированы для использования стандарта 802.11n. Рекомендуем включать по умолчанию режим WMM во всех сертифицированных Wi-Fi-устройствах (точки доступа, беспроводные маршрутизаторы, адаптеры).
Обращаем ваше внимание, что режим WMM должен быть включен как на точке доступа, так и на беспроводном адаптере.

Режим WMM в настройках различных адаптеров может называться по разному: WMM, Мультимедийная среда, WMM Capable и т.п.

6. Отключите использование канала 40 МГц.

Стандартом 802.11n предусмотрена возможность использования широкополосных каналов - 40 МГц для повышения пропускной способности.

Но в реальности при изменении ширины канала с 20 МГц на 40 МГц (или использовании режима автоматического выбора ширины канала "Auto 20/40" в некоторых устройствах) можно получить даже снижение, а не увеличение пропускной способности. Снижение пропускной способности и нестабильность соединения может происходить несмотря на цифры канальной скорости подключения, которая в 2 раза выше при использовании ширины канала 40 МГц.
Реальные преимущества использования канала шириной 40 МГц (в частности увеличение пропускной способности от 10 до 20 Мбит/с), как правило, можно получить только в условиях сильного сигнала. Если же уровень сигнала падает, то использование канала шириной 40 МГц становится гораздо менее эффективным и не обеспечивает повышение пропускной способности.
При использовании канала шириной 40 МГц и слабом уровне сигнала пропускная способность может снижаться до 80% и не привести к желаемому увеличению пропускной способности.

Если же вы решили использовать канал шириной 40 МГц и при этом заметили снижение скорости (не канальной скорости подключения, которая отображается в веб-конфигураторе в меню Системный монитор, а скорости загрузки веб-страниц или приёма/передачи файлов), рекомендуем использовать канал шириной 20 МГц. В этом случае вы сможете увеличить пропускную способность соединения.
Кроме того, с некоторыми устройствами соединение удается установить именно при использовании канала шириной 20 МГц (при использовании канала шириной 40 МГц соединение не устанавливается).

7. Используйте актуальный драйвер беспроводного адаптера.

Низкая скорость соединения может быть также следствием плохой совместимости драйверов различных производителей оборудования Wi-Fi. Нередки случаи, когда установив другую версию драйвера беспроводного адаптера от его производителя или от производителя используемого в нем чипсета, можно получить существенное увеличение скорости.

Увеличить скорость работы беспроводной сети Wi-Fi Keenetic с некоторыми устройствами компании Apple может смена страны на United States. Это можно сделать через веб-конфигуратор в меню Сеть Wi-Fi на вкладке Точка доступа 5 ГГц или Точка доступа 2.4 ГГц в поле Страна .

Не нужно забывать, что на работу беспроводных сетей Wi-Fi оказывают влияние и другие факторы (например, расположение устройств и расстояние между ними, направление антенн, наличие большого числа устройств Wi-Fi, работающих в радиусе действия вашего устройства и использующих тот же частотный диапазон, и др.).

4 пользователям понравился пост

Действительно, несмотря на то что беспроводные сети Wi-Fi получили повсеместное признание и распространение, до настоящего момента за ними числятся три основных недостатка: низкая (по сравнению с проводным Ethernet) реальная скорость передачи данных, сложности с равномерным покрытием (и наличием так называемых мертвых зон - dead spots) и проблемы безопасности данных и несанкционированного доступа. Теперь давайте посмотрим на основные достоинства устройств, созданных по спецификации 802.11n. Это заметно более высокая скорость передачи данных, улучшенная безопасность благодаря введению нового алгоритма шифрования WPA2, а также значительное расширение зоны покрытия и большая помехоустойчивость. Но, разумеется, мы уже давно привыкли к тому, что рекламно-маркетинговые цифры, обещающие многократное улучшение самых разных показателей, конечно же имеют что-то общее с реальными характеристиками, но далеко не всегда совпадают с ними даже по порядку величины. А для того, чтобы правильно оценить новые возможности и их ограничения, всегда имеет смысл представлять, за счет чего, собственно, эти новые возможности достигаются.

Немного теории. Теоретическая скорость соединения для устройств 802.11n cоставляет 300 Мбит/c, а для устройств предыдущего и наиболее сейчас распространенного 802.11g - 54 Мбит/c. Обе цифры соответствуют идеальным, но не существующим в природе условиям. Но все-таки за счет чего может достигаться увеличение скорости больше чем в 5 раз? Если задать этот вопрос любознательному ребенку, который, к своему счастью, еще не обязан демонстрировать глубокие познания в радиофизике, то он определенно выскажется в том духе, что у новых устройств торчит больше антенн, значит, поэтому они и работают быстрее. И в общем-то, примерно так оно и есть, увеличение скорости и зоны устойчивого покрытия достигается во многом благодаря технологии многолучевого распространения (MIMO - Multiple Input Multiple Output), при которой данные разделяются между несколькими передатчиками, работающими на одной и той же частоте.

Не отказались разработчики и еще от одного простого и понятного способа увеличения скорости - использования двух частотных каналов вместо одного. Если в 802.11g задействуется один частотный канал шириной 20 МГц, то в 802.11n применяется технология, связывающая два расположенных рядом друг с другом канала в один шириной 40 МГц (сведения об использовании двух каналов вместо одного нам очень пригодятся на практике при настройке устройств на максимальную производительность).

Одна из причин, по которой реально наблюдаемая скорость в сетевых приложениях всегда меньше заявленной производителем, состоит в том, что кроме собственно передаваемых данных устройства обмениваются также служебной информацией через все тот же канал связи. Таким образом, скорость сетевого соединения на уровне приложений всегда меньше, чем на физическом уровне. Ну а на коробке по понятным причинам принято указывать большее по абсолютной величине значение без каких-либо дополнительных уточнений. Соответственно еще одна возможность для увеличения реальной скорости передачи данных - это оптимизация «накладных расходов», т. е. объема пересылаемых служебных данных, в первую очередь за счет объединения на физическом уровне нескольких кадров данных в один.

Разумеется, это только некоторые из основных нововведений в стандарте 802.11n. Но, строго говоря, полной и окончательной спецификации устройств 802.11n не существует до сегодняшнего дня. И в этом еще одна, значительно менее радостная причина пристального внимания к новому стандарту и большого числа разговоров о нем. Принятие его окончательной спецификации IEEE 802.11n откладывается уже несколько лет и в настоящий момент запланировано на вторую половину 2008 г., но нет никаких гарантий того, что утверждение документа не будет в очередной раз отложено. В то же время многие производители попытались в числе первых представить на рынок устройства на основе предварительных версий стандарта, что в какой-то момент привело к появлению сырых и плохо совместимых между собой устройств, которые, кроме того, зачастую проигрывали в скорости по сравнению с нестандартизованными решениями других производителей (см. «Draft-N:не спешите со скоростью», «Мир ПК», ). С тех пор была утверждена предварительная версия стандарта 802.11n Draft 2.0, за сертификацию, не дожидаясь официального утверждения IEEE 802.11n, взялась организация Wi-Fi Alliance, а у разработчиков было достаточно времени для того, чтобы устранить недочеты, характерные для первых моделей устройств. Список устройств, прошедших сертификацию, доступен на сайте www.wifialliance.org , и именно на этот список мы ориентировались, планируя тестирование первых устройств стандарта 802.11n Draft 2.0.

Практика. Как обычно, из восьми сертифицированных устройств, производители которых представлены в России, реально оказались доступными только три комплекта оборудования, состоящих из точки доступа и соответствующего адаптера, - DIR-655 и DWA-645 от D-Link, WNR854T и WN511T от Netgear, а также BR-6504n и EW-7718Un компании Edimax. Очень кстати каждый из рассматриваемых маршрутизаторов оказался оснащен четырьмя портами Gigabit Ethernet, и проводное соединение, таким образом, заведомо никак не ограничивало измеряемую нами скорость соединения (подробности измерений см. во врезке «Как мы тестировали»). Вряд ли стоит подробно останавливаться на внешнем виде и комплектации каждого из устройств (вся подобная информация представлена на соответствующих веб-сайтах производителей). Разумеется, внешний облик - далеко не главное качество маршрутизатора, но и не такое уж незначительное, ведь для наилучшего распространения сигнала логично располагать это устрой-ство на высоком и видном месте. Наибольшее внимание здесь наверняка привлечет модель Netgear - у нее отсутствуют внешние антенны. Из наблюдений во время настройки маршрутизаторов стоит, пожалуй, упомянуть довольно полезную функцию автоматического выбора наиболее свободного частотного канала, реализованную в D-Link DIR-655. Заметим, что перед установкой может иметь смысл загрузить с сайта производителя последнюю версию драйверов - так, например, первоначально адаптер Netgear принципиально не хотел устанавливать соединения по стандарту 802.11n с маршрутизаторами других производителей, но обновление драйверов полностью решило эту проблему. Упомянем и о том, что указанные маршрутизаторы могут занимать один или два канала. При этом устройство D-Link по умолчанию настроено на работу с каналом шириной 20 МГц, а модели Netgear и Edimax - со сдвоенным. Для измерения максимальной производительности мы, разумеется, использовали режим с полосой 40 МГц, но в таком случае возможно ухудшение работы других беспроводных сетей, находящихся в непосредственной близости. Кстати, прежде чем обсуждать производительность, напомним, что до появления сетей Wi-Fi диапазон 2,4 ГГц относился к так называемым мусорным диапазонам (garbage bands) из-за большого числа помех самого разного характера, а с тех пор ситуация если и изменилась, то не в лучшую сторону. И до определенной степени именно этим можно объяснить существенные различия в скорости передачи данных от одного измерения к другому. Разумеется, чтобы уменьшить случайную ошибку измерений, мы сделали их довольно много и провели соответствующую статистическую обработку результатов. Но в любом случае можем с уверенностью утверждать, что встречающиеся время от времени рассуждения о том, что одно устройство лучше другого, потому что скорость копирования файлов у него оказалась на несколько мегабит в секунду выше, просто лишены всякого смысла без многократных измерений и необходимой обработки результатов.

Средние скорости передачи данных по протоколу TCP/IP представлены на диаграмме 1, изучив которую можно сделать следующий вывод: в среднем скорость соединения по 802.11n составляет порядка 50 Мбит/c, что примерно в 2,5 раза больше, чем скорость соединения по 802.11g. Кроме того, хотя, как и следовало ожидать, использование точки доступа и адаптера одного и того же производителя приводит к наилучшим скоростным показателям, устройства всех трех производителей демонстрируют довольно неплохую совместимость друг с другом.

Во второй серии испытаний мы измеряли скорость работы беспроводной сети вблизи сильнодействующего источника помех, в качестве которого использовалась работающая СВЧ-печь. Полученные результаты говорят сами за себя: если для стандартного 802.11g-соединения скорость падает на порядок и составляет около 2 Мбит/c, то устройства, соответствующие 802.11n, демонстрируют устойчивую работу со средней скоростью более 10 Мбит/c, т. е., как минимум в 5 раз быстрее.

Соответственно, основываясь на серии проведенных измерений, приходим к заключению: устройства 802.11n обеспечивают реальную скорость соединения по протоколу TCP/IP около 50 Мбит/c, демонстрируют существенно лучшую работу беспроводной сети в случае сильнодействующих помех, а кроме того, устройства разных производителей (во всяком случае, как минимум трех - D-Link, Netgear и Edimax) уже довольно хорошо взаимодействуют друг с другом.

Как мы тестировали

К исследуемой точке доступа по проводному Ethernet подключался компьютер на базе процессора Intel Extreme Edition 955 c 1-Гбайт ОЗУ и жестким диском WD4000КВ, работающий под управлением Windows XP SP2. С помощью беспроводного соединения к точке доступа подключался ноутбук Acer TravelMate 3300, работающий под управлением Windows XP SP2, оснащенный процессором Intel Pentium M 1,7 ГГц, ОЗУ объемом 512 Мбайт и жестким диском Hitachi TravelStar 4K120. Скорость соединения измерялась с помощью пакетa Netperf (www.netperf.org). Для оценки производительности беспроводной сети измерялась скорость передачи нисходящего потока данных (downlink) TCP/IP от стационарного компьютера к ноутбуку. Скорость нисходящего соединения при подключении компьютеров по сети Ethernet 1 Гбит/c составила порядка 350 Мбит/c. При настройке точки доступа выбирался частотный канал, наиболее удаленный от других источников сигнала и соответственно обеспечивающий максимальную пропускную способность. Для исключения возможного влияния расположения точки доступа и других случайных факторов каждое измерение проводилось 20 раз.

802.11n — режим передачи данных, реальная скорость примерно в четыре раза выше чем у 802.11g (54 Мбит/с). Но это имеется ввиду если устройство которое отправляет и которое принимает — работают в режиме 802.11n.

Устройства 802.11n работают в диапазоне частот 2.4 — 2.5 или 5 ГГц. Обычно частота указывается в документации к устройству, либо на упаковке. Радиус действия — 100 метров (может отражаться на скорости).

IEEE 802.11n — быстрый режим работы вай-фай, быстрее только 802.11ас (это вообще нереально крутой стандарт). Совместимость 802.11n с более старыми 802.11a/b/g возможна при использовании одной и той же частоты и канала.

Вы можете думать что я странный, но вот я не люблю Wi-Fi — не знаю почему, но мне как-то постоянно кажется что это не так стабильно как провода (витая пара). Может потому что у меня были только USB-адаптеры. В будущем хочу взять себе Wi-Fi PCI-карту, надеюсь что там все стабильно уж)) Я уже молчу о том, что Wi-Fi USB без антенны и скорость из-за всяких стен будет снижаться.. Но сейчас у нас в квартире провода валяются, и я согласен — не очень то и удобно..))

Как я понимаю — 802.11n это неплохой стандарт, так как он включает уже в себя характеристики 802.11a/b/g.

Однако выясняется вот что — 802.11n не совместим с предыдущими стандартами. И как я понимаю, это основная причина, из-за чего до сих пор 802.11n не особо популярный стандарт, а ведь появился он в 2007 году. Вроде бы все таки совместимость есть — об этом написал ниже.

Некоторые характеристики других стандартов:


Стандартов есть много и некоторые из них очень интересны своим предназначением:

Смотрите, вот 802.11p — определяет тип устройств, которые в радиусе километра едут со скоростью не более 200 км.. представляете?)) Вот это технологии!!

802.11n и скорость роутера

Смотрите, может быть такая ситуация — вам нужно увеличить скорость в роутере. Что делать? Ваш роутер спокойно может поддерживать стандарт IEEE 802.11n. Нужно открыть настройки, и где-то там найти опцию применения этого стандарта, то есть чтобы устройство работало в этом режиме. Если у вас роутер ASUS, то настройка может иметь примерно такой вид:


По сути — главное это буква N. Если у вас фирма TP-Link, то настройка может иметь такой вид:


Это все для роутера. Я понимаю что информации мало — но хотя бы теперь вы знаете, что в роутере есть такая настройка, а вот как подключиться к роутеру.. лучше посмотреть в интернете, я признаюсь — в этом не силен. Знаю только что нужно открыть адрес.. что-то вроде 192.168.1.1, как-то так..

Если у вас ноутбук, он тоже может поддерживать стандарт IEEE 802.11n. И его полезно установить, если вы например создаете точку доступа из ноутбука (да, это возможно). Откройте диспетчер устройств, для этого зажмите кнопки Win + R и вставьте эту команду:


Потом найдите ваш Wi-Fi адаптер (может называться сетевой адаптер Broadcom 802.11n) — нажмите правой кнопкой и выберите Свойства:


Перейдите на вкладку Дополнительно и найдите пункт Режим 802.11n прямого соединения, выберите включить:

Настройка может называться иначе — Wireless Mode, Wireless Type, Wi-Fi Mode, Wi-Fi type. В общем нужно указать режим передачи данных. Но эффект в плане скорости, как я уже писал, будет при условии если оба устройства используют стандарт 802.11n.

Нашел вот такую важную информацию по поводу совместимости:


Про совместимость, а также много важной информации о стандартах 802.11 читайте здесь:

Там реально очень много ценной информации, советую все таки посмотреть.

AdHoc Support 802.11n что это? Нужно включать или нет?

AdHoc Support 802.11n или AdHoc 11n- поддержка работы временной сети AdHoc, когда соединение возможно между разными устройствами. Используется для оперативной передачи данных. Не нашел информации о том, возможно ли организовать раздачу интернета в сети AdHoc (но все может быть).

Официально AdHoc ограничивает скорость до уровня стандарта 11g — 54 Мбит/с.

Интересный момент узнал — скорость Wi-Fi 802.11g, как я уже написал — 54 Мбит/с. Однако оказывается что 54, это суммарная цифра, то есть это прием и отправка. Так то, в одну сторону скорость — 27 Мбит/с. Но это еще не все — 27 Мбит/с это канальная скорость, которая возможна при идеальных условиях, их достичь нереально — 30-40% канала все равно составляют помехи в виде мобильных телефонов, всяких излучений, смарт-телеки с вай фаем и прочее. В итоге скорость на деле может быть реально 18-20 Мбит/с, а то и меньше. Я не буду утверждать — но возможно что это касается и других стандартов.

Так нужно включать или нет? Получается что без надобности — не нужно. Также, если я правильно понимаю, то при включении будет создана новая локальная сеть и возможно все таки можно в ней организовать интернет. Иными словами, может быть.. что при помощи AdHoc можно создать точку доступа Wi-Fi. Только что посмотрел в интернете — вроде бы таки можно))

Просто я помню вот что.. как-то я купил себе Wi-Fi адаптер фирмы D-Link (кажется это была модель D-Link N150 DWA-123) и там не было поддержки создания точки доступа. Но вот чип, он был то ли китайский.. толи еще какой-то.. в общем я узнал, что на него можно установить специальные неофициальные драйвера, полу-кривые, и при помощи них можно создать точку доступа.. И вот эта точка доступа работала вроде бы при помощи AdHoc, к сожалению точно не помню — но работала более-менее сносно.

Настройки Ad Hoc в свойствах сетевой карты

На заметку — QoS это технология распределения трафика в плане приоритетов. Обеспечивает необходимый высокий уровень передачи пакетов для важных процессов/программ. Если простыми словами, то QoS позволяет задать высокий приоритет программам, где нужна мгновенная передача данных — онлайн игры, VoIP-телефония, стрим, потоковое вещание и подобное, наверно к Скайпу и Вайберу тоже относится.

802.11 Preamble Long and Short — что это за настройка?

Да уж, эти настройки — целая наука. Часть кадра, которая передается модулем 802.11, называется преамбулой. Может быть длинная (Long) и короткая (Short) преамбула и видимо это указывается в настройке 802.11 Preamble (или Preamble Type). Длинная преамбула использует 128-битное поле синхронизации, короткая — 56-битное.

Устройства 802.11, работающие на частоте 2.4 ГГц обязаны при приеме и передаче поддерживать длинные преамбулы. Устройства 802.11g должны уметь работать с длинными и короткими преамбулами. В устройствах 802.11b работа коротких преамбул опциональна.

Значения в настройке 802.11 Preamble могут быть Long, Short, Mixed mode (смешанный режим), Green field (режим зеленого поля), Legacy mode (унаследованный режим). Скажу сразу — лучше не трогать эти настройки без необходимости и оставить значение по умолчанию либо при наличии выбрать Auto (или Default).

Что означают режимы Long и Short — мы уже выше выяснили. Теперь коротко о других режимах:

  1. Legacy mode . Режим обмена данными между станциями с одной антенной.
  2. Mixed mode . Режим передачи данных между системами MIMO (быстро, но медленнее чем Green field), так и между обычными станциями (медленно, так как не поддерживают высокие скорости). Система MIMO определяет пакет в зависимости от приемника.
  3. Green field . Передача возможна между многоантенными устройствами. Когда происходит передача MIMO-системой, обычные станции ожидают освобождения канала, чтобы исключить конфликты. В этом режиме прием данных от устройств, работающих в вышеуказанных двух режимах — возможен, а вот передача им — нет. Это сделано чтобы в процессе передачи данных исключить одноантенные устройства, тем самым сохранив высокую скорость передачи.

Поддержка MIMO что это такое?

На заметку. MIMO (Multiple Input Multiple Output) — тип передачи данных, при котором методом пространственного кодирования сигнала увеличивается канал и передача данных осуществляется несколькими антеннами одновременно.

20.10.2018

Если вы ищите самый быстрый WiFi, вам нужен 802.11ac, здесь все просто. По сути, 802.11ас - ускоренная версия 802.11n (текущий стандарт WiFi, который используется на вашем смартфоне или ноутбуке), предлагающий ускорение ссылок от 433 мегабит в секунду (Мбит/с), и до нескольких гигабит в секунду. Чтобы достичь скорости, которая в десятки раз выше 802.11n, 802.11ac работает исключительно в диапазоне 5ГГц, использует огромную пропускную способность (80-160МГц), работает с 1-8 пространственными потоками (MIMO), и использует своеобразную технологию, называемую "beamforming" (формирование луча). Дополнительные сведения о том, что такое 802.11ac, и как оно со временем заменит проводной гигабитную Ethernet домашнюю и рабочую сеть, мы поговорим дальше.

Как работает 802.11ac.

Несколько лет назад, 802.11n представил некоторую интересную технологию, которая значительно увеличила скорость, по сравнению с 802.11b и g. 802.11ac работает практически так же, как и 802.11n. Например, в то время, как стандарт 802.11n поддерживал до 4 пространственных потоков, и ширину канала до 40МГц, 802.11aс может использовать 8 каналов, и ширину до 80МГц, а их комбинирование может вообще выдать 160МГц. Даже если все остальное останется по-прежнему (а оно не останется), это означает, что 802.11ac оперирует 8х160МГц пространственных потоков, по сравнению с 4х40МГц. Огромная разница, которая позволит выжимать огромные объемы информации из радиоволн.

Чтобы повысить пропускную способность еще больше, 802.11ac также представил модуляцию 256-QAM (по сравнению с 64-QAM в 802.11n), которая буквально сжимает 256 разных сигналов одной частоты, смещая и переплетая каждый из них в иную фазу. Теоретически, это увеличивает спектральную эффективность 802.11ac в 4 раза, по сравнению с 802.11n. Спектральная эффективность - это мера того, как хорошо беспроводной протокол или метод мультиплексирования использует пропускную способность, доступную для него. В диапазоне 5ГГц, в котором каналы достаточно широкие (20МГц+), спектральная эффективность не так важна. В сотовых диапазонах, тем не менее, каналы чаще всего и есть 5МГц шириной, что делает спектральную эффективность крайне важной.

802.11ac также вводит стандартизированное формирование луча (у 802.11n оно было, но не было стандартизировано, что делало интероперабельность проблемой). Формирование луча, по существу, передает радиосигналы таким образом, что они направлены на конкретное устройство. Это может повысить общую пропускную способность, и сделать его более последовательным, а также снизить энергопотребление. Сформировать луч можно при помощи смарт-антенны, которая физически двигается в поиске устройства, или путем модуляции амплитуды и фазы сигналов, так что они деструктивно интерферируют друг с другом, оставляя узкий, не интерферирующий луч. 802.11n использует второй метод, который может быть применен и роутерами и мобильными устройствами. Наконец, 802.11ac, как и предыдущие версии 802.11, полностью обратно совместим с 802.11n и 802.11g, так что вы можете сегодня купить роутер 802.11ac, и он будет отлично работать с вашими устройствами с более старыми WiFi устройствами.

Диапазон 802.11ac

Теоретически, при частоте 5МГц, и использовании сформированного луча, 802.11ac должен обладать таким же, как у 802.11n, или еще лучшим диапазоном (бел лучеобразования). Диапазон 5МГц, благодаря меньшей проникающей способности, обладает не таким диапазоном, как 2.4ГГц (802.11b/g). Но это компромисс, на который мы вынуждены пойти: нам просто не хватит спектральной пропускной способности в массивно используемом диапазоне 2.4ГГц, чтобы допустить максимальную скорость 802.11ac, достигающую гигабитного уровня. Пока ваш роутер находится в идеальном расположении, или у вас их несколько, не стоит переживать. Как всегда, более важным фактором является передача мощности ваших устройств, и качество антенны.

Насколько быстр 802.11ac?

И наконец, вопрос, ответ на который хотят знать все: насколько быстр стандарт WiFi 802.11ac? Как обычно, есть два ответа: теоретически достижимая в лаборатории скорость, и практический предел скорости, которым вы, скорее всего, будете довольствоваться в домашних условиях реального мира, окруженные кучей подавляющих сигнал препятствий.

Теоретическая максимальная скорость 802.11ac - 8 каналов 160МГц 256-QAM, каждый из которых способен на 866.7Мбит/с, что дает нам 6.933Мб/с, или скромные 7Гбит/с. Скорость передачи 900 мегабайт в секунду - это быстрей, чем передача на SATA 3 диск. В реальном мире, благодаря засоренности канала, вы, скорее всего, не получите больше 2-3 160МГц каналов, потому максимальная скорость остановится где-то на 1.7-2.5Гбит/с. По сравнению с теоретической максимальной скоростью 802.11n в 600Мб/с.

Apple Airport Extreme на 802.11ac, разобранный самым производительным роутером iFixit сегодняшнего дня (апрель 2015), включает D-Link AC3200 Ultra Wi-Fi Router (DIR-890L/R), Linksys Smart Wi-Fi Router AC 1900 (WRT1900AC), и Trendnet AC1750 Dual-Band Wireless Router (TEW-812DRU), как сообщает сайт PCMag. C этими роутерами, вам определенно стоит ожидать впечатляющих скоростей от 802.11ac, но пока что не откусывайте свой Gigabit Ethernet кабель.

В тесте Anandtech 2013 года, они испытывали роутер WD MyNet AC1300 802.11ac (до трех потоков) в паре с рядом устройств на 802.11ac, которые поддерживали 1-2 потока. Самая быстрая скорость передачи была достигнута ноутбуком Intel 7260 с беспроводным адаптером 802.11ac, который использовал два потока для получения 364Мб/с на расстоянии всего 1.5м. На 6м и через стену, тот же ноутбук был самым быстрым, но максимальная скорость составила 140Мб/с. Зафиксированный предел скорости для Intel 7260 составил 867Мб/с (2 потока по 433Мб/с).

В ситуации, когда вам не нужна максимальная производительность и надежность проводной GigE, 802.11ac поистине привлекателен. Вместо того, чтобы загромождать свою гостиную Ethernet кабелем, проведенным к домашнему кинотеатру из ПК под телевизором, более разумно использовать 802.11ac, который обладает достаточной пропускной способностью, чтобы беспроводным сигналом высочайшей четкости передать контент вашему HTPC. Для всех, кроме особо требовательных случаев, 802.11ac является очень достойной заменой Ethernet.

Будущее 802.11ac

Стандарт 802.11ac будет становиться еще быстрее. Как мы упоминали ранее, теоретическая максимальная скорость 802.11ac составляет скромные 7Гбит/с, и пока мы не добьемся этого в реальном мире, не стоит удивляться отметке в 2Гбит/с в ближайшие несколько лет. При 2Гбит/с, вы получите скорость передачи 256Мб/с, и внезапно Ethernet будут использоваться все меньше и меньше, пока не исчезнут. Чтобы достичь таких скоростей, производители чипсетов и устройств должны будут выяснить, как реализовать четыре или больше каналов для 802.11ac, учитывая как программное обеспечение, так и аппаратное.

Мы представляем, как Broadcom, Qualcomm, MediaTek, Marvell и Intel уже делают уверенные шаги в обеспечении 4-8 каналов для 802.11ac, ради интеграции самых последних роутеров, точек доступа, и мобильных устройств. Но пока спецификация 802.11ac не будет завершена, вторая волна чипсетов и устройств вряд ли появится. Производителям устройств и чипсетов нужно будет сделать много работы, чтобы убедиться в том, что продвинутые технологии вроде лучеобразования, соответствуют требованиям стандарта, и являются полностью совместимыми с другими устройствами стандарта 802.11ac.



Понравилась статья? Поделиться с друзьями: