Сетевая модель оси. Уровни эталонной модели osi. Модель взаимодействия open system

Модель OSI является концептуальной моделью, созданной международной организацией по стандартизации, которая позволяет различным системам связи общаться с использованием стандартных протоколов. Простым языком, OSI обеспечивает стандарт для различных компьютерных систем, чтобы иметь возможность общаться друг с другом.

Модели OSI можно рассматривать как универсальный язык для компьютерных сетей. Он основан на концепции разделения коммуникационной системы на семь абстрактных слоев, каждый из которых укладывается на последний.
Каждый уровень модели OSI выполняет определенную работу и взаимодействует со слоями выше и ниже себя. нацелены на определенные уровни сетевого подключения. Уровень приложений атакует целевой уровень 7 и уровень протокола атакует целевые уровни 3 и 4.

Почему модели OSI имеет значение

Несмотря на то, что современный интернет не строго соответствует модели OSI (он более точно соответствует более простому набору интернет-протоколов), модель OSI по-прежнему очень полезна для устранения неполадок сети. Будь то один человек, который не может получить свой порт в интернете, или веб-сайт не работает для тысяч пользователей, модель OSI может решить проблему и изолировать ее источник. Если проблему можно сузить до одного конкретного слоя модели, можно избежать большого количества ненужной работы.

Семь уровней абстракции модели OSI можно определить следующим образом, сверху вниз:

7. Прикладной уровень

Это единственный слой, который напрямую взаимодействует с данными пользователя. Программные приложения, такие как веб-браузеры и почтовые клиенты, используют уровень приложений для инициирования связи. Однако следует четко указать, что клиентские программные приложения не являются частью прикладного уровня. Скорее, прикладной уровень отвечает за протоколы и обработку данных, на которые опирается программное обеспечение для представления значимых данных пользователю. Протоколы прикладного уровня включают HTTP, а также SMTP – один из протоколов, который обеспечивает связь по электронной почте.

6. Уровень представления

Этот уровень в первую очередь отвечает за подготовку данных, чтобы они могли использоваться прикладным уровнем. Другими словами, уровень 6 делает данные презентабельными для приложений. Уровень представления данных отвечает за перевод, шифрование и сжатие данных.

Два взаимодействующих устройства могут использовать разные методы кодирования, поэтому уровень 6 отвечает за преобразование входящих данных в синтаксис, понятный прикладному уровню принимающего устройства.
Если устройства обмениваются данными через зашифрованное соединение, уровень 6 отвечает за добавление шифрования на стороне отправителя, а также за декодирование шифрования на стороне получателя, чтобы он мог представить уровень приложения с незашифрованными, читаемыми данными.

Наконец, уровень представления также отвечает за сжатие данных, получаемых от прикладного уровня, перед их доставкой на уровень Это помогает повысить скорость и эффективность связи за счет минимизации объема передаваемых данных.

5. Сеансовый уровень

Этот слой ответственен за открытие и закрытие связи между двумя устройствами. Время между открытием и закрытием связи называется сеансом. Уровень сеанса гарантирует, что сеанс остается открытым достаточно долго для передачи всех обмениваемых данных, а затем быстро закрывает сеанс, чтобы избежать потери ресурсов.
Уровень сеанса также синхронизирует передачу данных с контрольными точками. Например, при передаче файла размером 100 мегабайт слой сеанса может устанавливать контрольную точку каждые 5 мегабайт. В случае отключения или сбоя после передачи 52 мегабайт сеанс может быть возобновлен с последней контрольной точки, что означает, что необходимо передать еще 50 мегабайт данных. Без контрольно-пропускных пунктов вся передача должна была бы начаться с нуля.

4. Транспортный уровень

Уровень 4 ответственен за сквозную связь между этими двумя устройствами. Это включает в себя получение данных из слоя сеанса и разбиение их на куски, называемые сегментами, перед отправкой на уровень 3. Транспортный уровень на принимающем устройстве отвечает за повторную сборку сегментов в данные, которые может использовать слой сеанса.
Транспортный уровень отвечает за управление потоком и контроль ошибок. Управление потоком определяет оптимальную скорость передачи, чтобы гарантировать, что отправитель с быстрым соединением не перегружает получателя с медленным соединением. Транспортный уровень выполняет контроль ошибок на принимающей стороне, гарантируя, что полученные данные завершены, и запрашивая повторную передачу, если это не так.

3. Сетевой уровень

Сетевой уровень отвечает за облегчение передачи данных между двумя различными сетями. Если два взаимодействующих устройства находятся в одной сети, то сетевой уровень не нужен. Сетевой уровень разбивает сегменты транспортного уровня на более мелкие блоки, называемые пакетами, на устройстве отправителя и повторно собирает эти пакеты на принимающем устройстве. Сетевой уровень также находит наилучший физический путь, по которому данные достигают места назначения. Это называется маршрутизацией.

2. Уровень канала передачи данных

Очень похож на уровень сети, за исключением того, что 2 уровень облегчает передачу данных между двумя устройствами в той же сети. Данный канальный уровень принимает пакеты от сетевого уровня и делит их на более мелкие части, называемые фреймами. Как и сетевой уровень, уровень канала передачи данных также отвечает за управление потоками и управление ошибками во внутрисетевой связи (транспортный уровень выполняет только управление потоками и управление ошибками для межсетевой связи).

1. Физический уровень

Этот уровень включает физическое оборудование, участвующее в передаче данных, такое как кабели и коммутаторы. Это также слой, на котором данные преобразуются в битовый поток, представляющий собой строку 1s и 0s. Физический уровень обоих устройств должен также согласовать соглашение о сигнале так, чтобы 1s можно было отличить от 0s на обоих устройствах.

Потоки данных через модель OSI

Для того чтобы считываемая человеком информация передавалась по сети с одного устройства на другое, данные должны перемещаться вниз по семи уровням модели OSI на передающем устройстве, а затем вверх по семи слоям на принимающей стороне.
Например, кто-то хочет отправить письмо подруге. Отправитель составляет свое сообщение в приложении электронной почты на своем ноутбуке, а затем нажимает “отправить”. Его почтовое приложение передаст сообщение электронной почты на уровень приложения, который выберет протокол (SMTP) и передаст данные на уровень представления. Затем данные сжимаются и попадают на уровень сеанса, который инициализирует сеанс связи.

Затем данные попадут на транспортный уровень отправителя, где они будут сегментированы, затем эти сегменты будут разбиты на пакеты на сетевом уровне, которые будут разбиты еще дальше на фреймы на уровне канала передачи данных. Этот уровень доставит их на физический уровень, который преобразует данные в битовый поток 1s и 0s и отправит его через физический носитель, такой как кабель.
Как только компьютер получателя получит битовый поток через физический носитель (например, wifi), данные будут проходить через ту же серию слоев на его устройстве, но в обратном порядке. Сначала физический уровень преобразует битовый поток из 1s и 0s в кадры, которые передаются на уровень канала передачи данных. Уровень канала передачи данных затем соберет кадры в пакеты для сетевого уровня. Сетевой уровень тогда сделает сегменты из пакетов для транспортного уровня, который соберет сегменты в одну часть данных.

Дальше данные поступают на уровень сеанса получателя, который передает данные на уровень представления, а затем завершает сеанс связи. Далее слой представления удаляет сжатие и передает необработанные данные на уровень приложения. Затем прикладной уровень будет передавать данные, читаемые человеком, вместе с почтовым программным обеспечением получателя, что позволит читать электронную почту отправителя на экране ноутбука.

На видео: Модель OSI и стек протоколов TCP IP. Основы Ethernet.

В сетевой науке, как и в любой другой области знаний, существует два принципиальных подхода к обучению: движение от общего к частному и наоборот. Ну не то чтобы по жизни люди используют эти подходы в чистом виде, но все-таки на начальных этапах каждый обучающийся выбирает для себя одно из вышеозначенных направлений. Для высшей школы (по крайней мере (пост)советского образца) более характерен первый метод, для самообразования чаще всего второй: работал себе человек в сети, решал время от времени мелкие однопользовательского характера административные задачи, и вдруг захотелось ему разобраться -- а как, собственно, вся эта хреновина устроена?

Но цель этой статьи -- не философские рассуждения о методологии обучения. Мне хотелось бы представить вниманию начинающих сетевиков тообщее и главное, от которого, как от печки, можно танцевать к самым навороченным частным лавочкам. Понимая семиуровневую модель OSI и научившись "узнавать" ее уровни в уже известных вам технологиях, вы без труда сможете двигаться дальше в любом избранном вами направлении сетевой отрасли. Модель OSI суть тот каркас, на который будет навешиваться любое новое знание о сетях.

Данная модель так или иначе упоминается практически в любой современной литературе по сетям, а также во многих спецификациях конкретных протоколов и технологий. Не чувствуя необходимости изобретать велосипед, я решила опубликовать отрывки из работы Н. Олифер, В. Олифер (Центр Информационных Технологий) под названием “Роль коммуникационных протоколов и функциональное назначение основных типов оборудования корпоративных сетей”, которую считаю наилучшей и исчерпывающей публикацией в на эту тему.

шеф-редактор

модель

Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно представляет собой стандарт. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис. 1.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Рис. 1.1. Модель взаимодействия открытых систем ISO/OSI

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса, например, доступа к удаленным файлам, получение почты или печати на разделяемом принтере.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

Функции уровней модели ISO/OSI

Физический уровень.Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

Канальный уровень.На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка - точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B.

Сетевой уровень.Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами. Рассмотрим функции сетевого уровня на примере локальных сетей. Протокол канального уровня локальных сетей обеспечивает доставку данных между любыми узлами только в сети с соответствующейтиповой топологией . Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны, допустить использование произвольных топологий, используется дополнительный сетевой уровень. На этом уровне вводится понятие "сеть". В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень.

Сообщения сетевого уровня принято называтьпакетами (packets) . При организации доставки пакетов на сетевом уровне используется понятие"номер сети" . В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами.Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называетсямаршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время, как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемыхпротоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень.На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является вся система транспортировки данных в сети. Так, например, если качество каналов передачи связи очень высокое, и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок - с помощью предварительного установления логического соединения, контроля доставки сообщений с помощью контрольных сумм и циклической нумерации пакетов, установления тайм-аутов доставки и т.п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень.Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления.Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень.Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называетсясообщением (message) .

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, сервисами, предоставляемыми на верхних уровнях и прочими параметрами.

Характеристика популярных стеков коммуникационных протоколов

Итак, взаимодействие компьютеров в сетях происходит в соответствии с определенными правилами обмена сообщениями и их форматами, то есть в соответствии с определенными протоколами. Иерархически организованная совокупность протоколов, решающих задачу взаимодействия узлов сети, называется стеком коммуникационных протоколов.

Существует достаточно много стеков протоколов, широко применяемых в сетях. Это и стеки, являющиеся международными и национальными стандартами, и фирменные стеки, получившие распространение благодаря распространенности оборудования той или иной фирмы. Примерами популярных стеков протоколов могут служить стек IPX/SPX фирмы Novell, стек TCP/IP, используемый в сети Internet и во многих сетях на основе операционной системы UNIX, стек OSI международной организации по стандартизации, стек DECnet корпорации Digital Equipment и некоторые другие.

Использование в сети того или иного стека коммуникационных протоколов во многом определяет лицо сети и ее характеристики. В небольших сетях может использоваться исключительно один стек. В крупных корпоративных сетях, объединяющих различные сети, параллельно используются, как правило, несколько стеков.

В коммуникационном оборудовании реализуются протоколы нижних уровней, которые в большей степени стандартизованы, чем протоколы верхних уровней, и это является предпосылкой для успешной совместной работы оборудования различных производителей. Перечень протоколов, поддерживаемых тем или иным коммуникационным устройством, является одной из наиболее важных характеристик этого устройства.

Компьютеры реализуют коммуникационные протоколы в виде соответствующих программных элементов сетевой операционной системы, например, протоколы канального уровня, как правило, выполнены в виде драйверов сетевых адаптеров, а протоколы верхних уровней в виде серверных и клиентских компонент сетевых сервисов.

Умение хорошо работать в среде той или иной операционной системы является важной характеристикой коммуникационного оборудования. Часто можно прочитать в рекламе сетевого адаптера или концентратора, что он разрабатывался специально для работы в сети NetWare или UNIX. Это означает, что разработчики аппаратуры оптимизировали ее характеристики применительно к тем протоколам, которые используются в этой сетевой операционной системе, или к данной версии их реализации, если эти протоколы используются в различных ОС. Из-за особенностей реализации протоколов в различных ОС, в качестве одной из характеристик коммуникационного оборудования используется его сертифицированность на возможность работы в среде данной ОС.

На нижних уровнях - физическом и канальном - практически во всех стеках используются одни и те же протоколы. Это хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру.

Протоколы сетевого и более высоких уровней существующих стандартных стеков отличаются большим разнообразием и, как правило, не соответствуют рекомендуемому моделью ISO разбиению на уровни. В частности, в этих стеках функции сеансового и представительного уровня чаще всего объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель ISO появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует различать стек протоколов OSI и модель OSI. В то время, как модель OSI концептуально определяет процедуру взаимодействия открытых систем, декомпозируя задачу на 7 уровней, стандартизирует назначение каждого уровня и вводит стандартные названия уровней, стек OSI - это набор вполне конкретных спецификаций протоколов, образующих согласованный стек протоколов. Этот стек протоколов поддерживает правительство США в своей программе GOSIP. Все компьютерные сети, устанавливаемые в правительственных учреждениях после 1990 года, должны либо непосредственно поддерживать стек OSI, либо обеспечивать средства для перехода на этот стек в будущем. Тем не менее, стек OSI более популярен в Европе, а не в США, так как в Европе меньше установлено старых сетей, использующих свои собственные протоколы. В Европе также ощущается большая потребность в общем стеке, так как здесь имеется большое количество разных стран.

Это международный, независимый от производителей стандарт. Он может обеспечить взаимодействие между корпорациями, партнерами и поставщиками. Это взаимодействие осложняется из-за проблем с адресацией, именованием и безопасностью данных. Все эти проблемы в стеке OSI частично решены. Протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их более подходящими для мощных машин, а не для сетей персональных компьютеров. Большинство организаций пока только планируют переход к стеку OSI. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T. Ее сеть Stargroup полностью базируется на стеке OSI.

По вполне очевидным причинам стек OSI в отличие от других стандартных стеков полностью соответствует модели взаимодействия OSI, он включает спецификации для всех семи уровней модели взаимодействия открытых систем (рис. 1.3).


Рис. 1.3. Стек OSI

На стек OSI поддерживает протоколы Ethernet, Token Ring, FDDI, а также протоколы LLC, X.25 и ISDN. Эти протоколы будут подробно обсуждены в других разделах пособия.

Сервисысетевого, транспортного и сеансового уровней также имеются в стеке OSI, однако они мало распространены. На сетевом уровне реализованы протоколы как без установления соединений, так и с установлением соединений. Транспортный протокол стека OSI в соответствии с функциями, определенными для него в модели OSI, скрывает различия между сетевыми сервисами с установлением соединения и без установления соединения, так что пользователи получают нужное качество обслуживания независимо от нижележащего сетевого уровня. Чтобы обеспечить это, транспортный уровень требует, чтобы пользователь задал нужное качество обслуживания. Определены 5 классов транспортного сервиса, от низшего класса 0 до высшего класса 4, которые отличаются степенью устойчивости к ошибкам и требованиями к восстановлению данных после ошибок.

Сервисыприкладного уровня включают передачу файлов, эмуляцию терминала, службу каталогов и почту. Из них наиболее перспективными являются служба каталогов (стандарт Х.500), электронная почта (Х.400), протокол виртуального терминала (VT), протокол передачи, доступа и управления файлами (FTAM), протокол пересылки и управления работами (JTM). В последнее время ISO сконцентрировала свои усилия именно на сервисах верхнего уровня.

X.400

- это семейство рекомендаций Международного консультативного комитета по телеграфии и телефонии (CCITT), в которых описываются системы пересылки электронных сообщений. На сегодняшний день рекомендации X.400 являются наиболее популярным протоколом обмена сообщениями. Рекомендации Х.400 описывают модель системы обмена сообщениями, протоколы взаимодействия между всеми компонентами этой системы, а также множество видов сообщений и возможности, которыми обладает отправитель по каждому виду отправляемых сообщений.

Рекомендации X.400 определяют следующий минимально необходимый набор услуг, предоставляемых пользователям: управление доступом, ведение уникальных системных идентификаторов сообщений, извещение о доставке или недоставке сообщения с указанием причины, индикация типа содержания сообщения, индикация преобразования содержания сообщения, временные отметки при передаче и доставке, выбор категории доставки (срочная, несрочная, нормальная), многоадресная доставка, задержанная доставка (до определенного момента времени), преобразование содержимого для взаимодействия с несовместимыми почтовыми системами, например, со службами телексной и факсимильной связей, запрос о том, доставлено ли конкретное сообщение, списки рассылки, которые могут иметь вложенную структуру, средства защиты сообщений от несанкционированного доступа, базирующиеся на асимметричной криптосистеме публичных ключей.

Целью рекомендацийX.500 является выработка стандартов глобальной справочной службы. Процесс доставки сообщения требует знания адреса получателя, что при больших размерах сетей представляет собой проблему, поэтому необходимо иметь справочную службу, помогающую получать адреса отправителей и получателей. В общем виде служба X.500 представляет собой распределенную базу данных имен и адресов. Все пользователи потенциально имеют право войти в эту базу данных, используя определенный набор атрибутов.

Над базой данных имен и адресов определены следующие операции:

  • чтение - получение адреса по известному имени,
  • запрос - получение имени по известным атрибутам адреса,
  • модификация, включающая удаление и добавление записей в базе данных.

Основные проблемы реализации рекомендаций X.500 проистекают из масштабности этого проекта, претендующего на роль всемирной справочной службы. Поэтому программное обеспечение, реализующее рекомендации X.500, получается весьма громоздким и предъявляет высокие требования к производительности аппаратуры.

ПротоколVT решает проблему несовместимости различных протоколов эмуляции терминалов. Сейчас пользователю персонального компьютера, совместимого с IBM PC, для одновременной работы с компьютерами VAX, IBM 3090 и HP9000 нужно приобрести три различные программы для эмуляции терминалов различных типов и использующих разные протоколы. Если бы каждый хост-компьютер имел бы в своем составе программное обеспечение протокола эмуляции терминала ISO, то и пользователю бы понадобилась только одна программа, поддерживающая протокол VT. В своем стандарте ISO аккумулировала широко распространенные функции эмуляции терминалов.

Передача файлов - это наиболее распространенный компьютерный сервис. Доступ к файлам, как к локальным, так и к удаленным, нужен всем приложениям - текстовым редакторам, электронной почте, базам данных или программам удаленного запуска. ISO предусматривает такой сервис в протоколеFTAM . Наряду со стандартом X.400, это наиболее популярный стандарт стека OSI. FTAM предусматривает средства для локализации и доступа к содержимому файла и включает набор директив для вставки, замены, расширения и очистки содержимого файла. FTAM также предусматривает средства для манипулирования файлом как единым целым, включая создание, удаление, чтение, открытие, закрытие файла и выбор его атрибутов.

Протокол пересылки и управления работамиJTM позволяет пользователям пересылать работы, которые должны быть выполнены на хост-компьютере. Язык управления заданиями, который обеспечивает передачу работ, указывает хост-компьютеру, какие действия и с какими программами и файлами должны быть выполнены. Протокол JTM поддерживает традиционную пакетную обработку, обработку транзакций, ввод удаленных заданий и доступ к распределенным базам данных.

Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных и перспективных стеков коммуникационных протоколов. Если в настоящее время он распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT, NetWare) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 1.4. Протоколы TCP/IP делятся на 4 уровня.

Рис. 1.4. Стек TCP / IP

Самый нижний (уровень IV ) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III ) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протоколIP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информацииRIP (Routing Internet Protocol) иOSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщенийICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II ) называется основным. На этом уровне функционируют протокол управления передачейTCP (Transmission Control Protocol) и протокол дейтаграмм пользователяUDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I ) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet и ее российской ветви РЕЛКОМ, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них, наиболее тесно связанных с тематикой данного курса.

ПротоколSNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файловFTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файловTFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протоколtelnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, который она разработала для своей сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали имя стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньше степени, чем IPX/SPX. По количеству установок протоколы IPX/SPX лидируют, и это обусловлено тем, что сама ОС NetWare занимает лидирующее положение с долей установок в мировом масштабе примерно в 65%.

Семейство протоколов фирмы Novell и их соответствие модели ISO/OSI представлено на рисунке 1.5.

Рис. 1.5. Стек IPX / SPX

Нафизическом и канальном уровнях в сетях Novell используются все популярные протоколы этих уровней (Ethernet, Token Ring, FDDI и другие).

Насетевом уровне в стеке Novell работает протоколIPX , а также протоколы обмена маршрутной информациейRIP иNLSP (аналог протокола OSPF стека TCP/IP). IPX является протоколом, который занимается вопросами адресации и маршрутизации пакетов в сетях Novell. Маршрутные решения IPX основаны на адресных полях в заголовке его пакета, а также на информации, поступающей от протоколов обмена маршрутной информацией. Например, IPX использует информацию, поставляемую либо протоколом RIP, либо протоколом NLSP (NetWare Link State Protocol) для передачи пакетов компьютеру назначения или следующему маршрутизатору. Протокол IPX поддерживает только дейтаграммный способ обмена сообщениями, за счет чего экономно потребляет вычислительные ресурсы. Итак, протокол IPX обеспечивает выполнение трех функций: задание адреса, установление маршрута и рассылку дейтаграмм.

Транспортному уровнюмодели OSI в стеке Novell соответствует протокол SPX, который осуществляет передачу сообщений с установлением соединений.

На верхнихприкладном, представительном и сеансовом уровнях работают протоколы NCP и SAP. ПротоколNCP (NetWare Core Protocol) является протоколом взаимодействия сервера NetWare и оболочки рабочей станции. Этот протокол прикладного уровня реализует архитектуру клиент-сервер на верхних уровнях модели OSI. С помощью функций этого протокола рабочая станция производит подключение к серверу, отображает каталоги сервера на локальные буквы дисководов, просматривает файловую систему сервера, копирует удаленные файлы, изменяет их атрибуты и т.п., а также осуществляет разделение сетевого принтера между рабочими станциями.

(Service Advertising Protocol) - протокол объявления о сервисе - концептуально подобен протоколу RIP. Подобно тому, как протокол RIP позволяет маршрутизаторам обмениваться маршрутной информацией, протокол SAP дает возможность сетевым устройствам обмениваться информацией об имеющихся сетевых сервисах.

Серверы и маршрутизаторы используют SAP для объявления о своих сервисных услугах и сетевых адресах. Протокол SAP позволяет сетевым устройствам постоянно корректировать данные о том, какие сервисные услуги имеются сейчас в сети. При старте серверы используют SAP для оповещения оставшейся части сети о своих услугах. Когда сервер завершает работу, то он использует SAP для того, чтобы известить сеть о прекращении действия своих услуг.

В сетях Novell серверы NetWare 3.x каждую минуту рассылают широковещательные пакеты SAP. Пакеты SAP в значительной степени засоряют сеть, поэтому одной из основных задач маршрутизаторов, выходящих на глобальные связи, является фильтрация трафика SAP-пакетов и RIP-пакетов.

Особенности стека IPX/SPX обусловлены особенностями ОС NetWare, а именно ориентацией ее ранних версий (до 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Поэтому Novell нужны были протоколы, на реализацию которых требовалось минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS 640 Кбайтами) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате, протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами).

Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать у нее лицензию, долгое время ограничивали распространенность его только сетями NetWare. Однако к моменту выпуска версии NetWare 4.0, Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на приспособление их для работы в корпоративных сетях. Сейчас стек IPX/SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС - SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 1.6) использовала для реализации сетевых сервисов протокол SMB (Server Message Block).

Рис. 1.6. Стек NetBIOS / SMB

ПротоколNetBIOS работает на трех уровнях модели взаимодействия открытых систем:сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

ПротоколSMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

  • Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.
  • Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.
  • Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.
  • Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.

для чего нужно нам сие ценное знание? (editorial)

Как-то раз задал мне один коллега каверзный вопрос. Ну вот, говорит, знаешь ты, что такое модель OSI... И для чего тебе это нужно, какая от этого знания практическая польза: разве что повыпендриваться перед чайниками? Неправда, польза от этого знания суть системный подход при решении многих пракрического свойства задач. Например:

  • troubleshooting (
обнаружение и устранение неполадок)

Приходит к вам как к админу(опытному сетевику) юзер(просто приятель) и говорит -- у меня тут "не соединяет". Нету, говорит, сети и все тут. Начинаете разбираться. Так вот, исходя из опята наблюдения за ближними своими, я заметила, что действия человека, "не осознающего модель OSI в сердце своем", отличаются характерной хаотичностью: то провод подергает, то вдруг в браузере что-то поковыряет. И приводит это зачастую к тому, что двигаясь без направления такой "специалист" подергает что угодно и где угодно, кроме как в области неполадки, убив кучу своего и чужого времени. При осознании же существования уровней взаимодействия движение будет более последовательным. И хотя отправная точка может быть разной (в каждой попадавшейся мне книге рекомнедации несколько различались), общая логическая посылка поиска неисправности такова -- если на уровне Х взаимодействие осуществляется корректно, то и на уровне Х-1 скорее всего тоже все в порядке. По крайней мере для каждого конкретногомомента времени. Производя траблшутинг в IP-сетях лично я начинаю "копать" от второго уровня стека DOD, он же третий уровень OSI, он же Internet Protocol. Во первых потому, что наиболее легко произвести "поверхностный осмотр пациента" (пациент скорее пингуется, чем не пингуется), ну и во вторых, если, слава те Господи, пингуется, можно отринуть малоприятные манипуляции с тестированием кабеля, сетевых карт и разборок и прочими приятными вещами;) Хотя в особо тяжелых случаях придется начинать все-таки с уровня первого, причем самым серьезным образом.

  • взаимопонимание с коллегами

Для иллюстрирования этого пункта приведу вам в качестве примера такую байку из жизни. Однажды знакомые мои из одной небольшой фирмы позвали меня в гости помочь разобраться, почему сеть нехорошо работает, и дать какие-нибудь рекомендации на сей счет. Прихожу я в контору. А у них там оказывается даже админ есть, называемый по старой доброй традиции "программист" (а вообще-то он FoxPro в основном занимается;) -- старой доперестроечной закалки IT-специалист. Ну я у него спрашиваю, что у вас за сеть? Он: "В смысле? Ну просто сеть". Сеть, в общем, как сеть. Ну я наводящие вопросы: на сетевом уровне какой протокол используется? Он: "А это ГДЕ?" Я уточняю: "Ну IP или IPX или что там у вас..." "О" -- говорит, -- "кажется да: IPX/еще-там-что-то!" Кстати, "еще-там-что-то", как вы могли заметить, от сетевого уровня чуть-чуть повыше расположен, ну да не суть... Что характерно, он эту сеть построил и даже худо бедно сопровождал. Не удивительно что она зачахла-то... ;) А знал бы про OSI -- в 5 минут бы схемку нацарапал -- от 10Base-2 до прикладных программ. И не пришлось бы под стол лазить -- коаксиальные провода обозревать.

  • изучение новых технологий

На этом важном аспекте я уже останавливалась в предисловии и еще раз повторюсь: при изучении нового протокола следует в первую же очередь разобраться а) в каком стеке(ах) протоколов его место и б) в какой именно части стека и с кем взаимодействует снизу и кто с ним сверху может... :) И полноя ясность в голове от этого наступит. А форматы сообщений да API разновсякие -- ну это уже дело техники:)

В данной статье, мы разберемся, что такое сетевая модель OSI, из каких уровней она состоит, и какие функции выполняет. Итак, предмет разговора является некой моделью взаимодействия эталонов, определяющих последовательность обмена данных, и программ.

Аббревиатура OSI Open Systems Interconnection, означает модель взаимодействия открытых систем. Для решения задачи совместимости разнообразных систем, организация по стандартизации выпустила в 1983 г. эталон модели OSI. Она описывает структуру открытых систем, их требования, и их взаимодействие.

Open system – это система, составлена согласно открытым спецификациям, которые доступны каждому, а также соответствуют определенным стандартам. Например, ОС Windows считается open system, потому что она создана на основе открытых спецификаций, которые описывают деятельность интернета, но начальные коды системы закрыты.

Достоинство в том, что есть возможность построить сеть из устройств от разных изготовителей, если нужно, заменить ее отдельные компоненты. Можно без проблем, объединить несколько сетей в одну целую.

Согласно рассматриваемой нами модели, необходимо, чтобы вычислительные сети состояли из семи уровней. Вследствие того, что модель не описывает протоколы, определяемые отдельными стандартами, она не является сетевой архитектурой.

К сожалению, с практической точки зрения, модель взаимодействия открытых систем не применяется. Её особенность заключается в овладении теоретическими вопросами сетевого взаимодействия. Именно поэтому в качестве простого языка для описания построения разных видов сети используется эта модель.

Уровни модели OSI

Базовая структура представляет собой систему, состоящую из 7 уровней. Возникает вопрос, за что отвечают семь этапов и зачем модели, такое количество уровней? Все они отвечают за определенную ступень процесса отправки сетевого сообщения, а также содержат в себе определенную смысловую нагрузку. Шаги выполняются, сепаративно друг от друга и не требует повышенного контроля, со стороны пользователя. Не правда ли, удобно?

Нижние ступени системы с первой по третью, управляют физической доставкой данных по сети, их называют media layers.

Остальные, уровни способствуют обеспечению точной доставки данных между компьютерами в сети, их называют хост-машины.

Прикладной – это ближайший уровень к юзеру. Его отличие от других в том, что он не предоставляет услуги другим ступеням. Обеспечивает услугами прикладные процессы, которые лежат за пределами масштаба модели, например, передача базы данных, голоса, и другое.

Данный этап устроен сравнительно проще других, ведь кроме единиц и нулей в нем нет других систем измерений, данный уровень не анализирует информацию и именно поэтому является самым нижним из уровней. На нем в основном осуществляется передача информации. Главный параметр загруженности – бит.

Основная цель физического уровня представить нуль и единицу в качестве сигналов, передаваемые по среде передачи данных.

Например, есть некий канал связи (КС), отправляемое сообщение, отправитель и соответственно получатель. У КС есть свои характеристики:

  • Пропускная способность, измеряемая, в бит/c, то есть, сколько данных мы можем передать за единицу времени.
  • Задержка, сколько времени пройдет, прежде чем сообщение дойдет от отправителя к получателю.
  • Количество ошибок, если ошибки возникают часто, то протоколы должны обеспечивать исправление ошибок. А если редко, то их можно исправлять на вышестоящих уровнях, на пример на транспортном.

В качестве канала передачи информации используются:

  • Кабели: телефонный, коаксиал, витая пара, оптический.
  • Беспроводные технологии, такие как, радиоволны, инфракрасное излучение.
  • Спутниковые КС
  • Беспроводная оптика или лазеры, применяются редко, из-за низкой скорости и большого количества помех.

Очень редко возникают ошибки в оптических кабелях, так как повлиять на распространение света сложно. В медных кабелях, ошибки возникают, но достаточно редко, а в беспроводной среде, ошибки возникают очень часто.

Следующая станция, которую посетит информация, напомнит таможню. А именно IP-адрес будет сравнен на совместимость со средой передачи. Здесь также выявляются и исправляются недочеты системы. Для удобства дальнейших операций, биты группируются в кадры – frame.

Цель канального уровня – передача сообщений по КС – кадров.

Задачи data link

  • Найти, где в потоке бит, начинается и оканчивается сообщение
  • Обнаружить и скорректировать ошибки при отправке информации
  • Адресация, необходимо знать, какому компьютеру отправлять информацию, потому что к разделяемой среде в основном, подключается несколько компьютеров
  • Обеспечить согласованный доступ к разделяемой среде, чтобы в одно и то же время, информацию передавал один компьютер.

На канальном уровне выявляются и исправляются ошибки. При обнаружении таковой проводится проверка правильности доставки данных, если неправильно, то кадр отбрасывается.

Исправление ошибок, требует применение специальных кодов, которые добавляют избыточную информацию в передаваемые данные.

Повторная отправка данных, применяется совместно с методом обнаружения ошибок. Если в кадре обнаружена ошибка, он отбрасывается, и отправитель направляет этот кадр заново.

Обнаружить и исправить ошибки

Практика показала эффективность следующих методов, если используется надежная среда для передачи данных (проводная) и ошибки возникают редко, то исправлять их лучше на верхнем уровне. Если в КС ошибки происходят часто, то ошибки необходимо исправлять сразу на канальном уровне.

Функции данного этапа в компьютере осуществляют сетевые адаптеры и драйверы, подходящие к ним. Через них и происходит непосредственный обмен данными.

Некоторые протоколы, используемые на канальном уровне, это HDLC, применяющая шинную топологию и другие.

(N ETWORK)

Этап напоминает процесс распределения информации. К примеру, все пользователя делиться на группы, а пакеты данных расходятся в соответствии с IP адресами, состоящими из 32 битов. Именно благодаря работе маршрутизаторов на этой инстанции, устраняются все различия сетей. Это процесс так называемой логической маршрутизации.

Основная задача состоит в создании составных сетей построенных на основе сетевых технологий разного канального уровня: Ethernet, MPLS. Сетевой уровень - это «основа» интернета.

Назначение сетевого уровня

Мы можем передавать информацию от одного компьютера к другому через Ethernet и Wi-Fi, тогда зачем нужен еще один уровень? У технологии канального уровня (КУ) есть две проблемы, во-первых, технологии КУ отличаются друг от друга, во-вторых, есть ограничение по масштабированию.

Какие могут быть различия в технологиях канального уровня?

Различный уровень предоставляемого сервиса, некоторые уровни гарантируют доставку и необходимый порядок следования сообщений. Wi-Fi просто гарантирует доставку сообщения, а нет.

Разная адресация, по размеру, иерархии. Сетевые технологии могут поддерживать широковещание, т.е. есть возможность отправить информацию всем компьютерам в сети.

Может различаться максимальный размер кадра (MTU), например, в изернете 1500, а в вай-фай 2300. Как можно согласовывать такие различия на сетевом уровне?

Можно предоставлять разный тип сервиса, например, кадры из Вай-Фай принимаются с отправкой подтверждения, а в Ethernet отправляются без подтверждения.

Для того чтобы согласовать разницу адресаций, на сетевом уровне, вводятся глобальные адреса, которые не зависят от адресов конкретных технологий (ARP для ) канального уровня.

Чтобы передавать данные через составные сети, у которых разный размер передаваемого кадра, используется фрагментация. Рассмотрим пример, первый компьютер передает данные второму, через 4 промежуточные сети, объединенные 3-ми маршрутизаторами. У каждой сети разный MTU.

Компьютер сформировал первый кадр и передал его на маршрутизатор, маршрутизатор проанализировал размер кадра, и понял, что передать полностью его через сеть 2 нельзя, потому что mtu2 у него слишком мал.

Маршрутизатор разбивает данные на 3 части и передает их отдельно.

Следующий маршрутизатор объединяет данные в один, большой пакет, определяет его размер и сравнивает с mtu сети 3. И видит, что один пакет MTU3 целиком передать нельзя (MTU3 больше, чем MTU2, но меньше, чем MTU1) и маршрутизатор разбивает пакет на 2 части и отправляет следующему маршрутизатору.

Последний маршрутизатор объединяет пакет и отправляет получателю целиком. Фрагментация занимается объединением сетей и это скрыто от отправителя и получателя.

Как решается проблема масштабируемости на сетевом уровне?

Работа ведется не с отдельными адресами, как на канальном уровне, а с блоками адресов. Пакеты, для которых не известен путь следования отбрасываются, а не пересылаются обратно на все порты. И существенное отличие от канального, возможность нескольких соединений между устройствами сетевого уровня и все эти соединения будут активными.

Задачи сетевого уровня :

  • Объединить сети, построенные разными технологиями;
  • Обеспечить качественное обслуживание;
  • Маршрутизация, поиск пути от отправителя информации к получателю, через промежуточные узлы сети.

Маршрутизация

Поиск пути отправки пакета между сетями через транзитные узлы – маршрутизаторы. Рассмотрим пример выполнения маршрутизации. Схема состоит из 5 маршрутизаторов и двух компьютеров. Как могут передаваться данные от одного компьютера к другому?

В следующий раз данные могут быть отправлены другим путем.

В случае поломки одного из маршрутизатора, ничего страшного не произойдет, можно найти путь в обход сломанного маршрутизатора.

Протоколы, применяемые на этом этапе: интернет протокол IP; IPX, необходимый для маршрутизации пакетов в сетях и др.

(TRANSPORT )

Есть следующая задача, на компьютер, который соединен с составной сетью приходит пакет, на компьютере работает много сетевых приложений (веб-браузер, скайп, почта), нам необходимо понять какому приложению нужно передать этот пакет. Взаимодействием сетевых приложений занимается транспортный уровень.

Задачи транспортного уровня

Отправка данных между процессами на разных хостах. Обеспечение адресации, нужно знать для какого процесса предназначен тот или другой пакет. Обеспечение надежности передачи информации.

Модель взаимодействия open system

Хосты - это устройства где функционируют полезные пользовательские программы и сетевое оборудование, например, коммутаторы, маршрутизаторы.

Особенностью транспортного уровня является прямое взаимодействие одного компьютера с транспортным уровнем на другом компьютере, на остальных уровнях взаимодействие идет по звеньям цепи.

Такой уровень обеспечивает сквозное соединение между двумя взаимодействующими хостами. Данный уровень независим от сети, он позволяет скрыть от разработчиков приложений детали сетевого взаимодействия.

Для адресации на транспортном уровне используются порты, это числа от 1 до 65 535. Порты записываются вот так: 192.168.1.3:80 (IP адрес и порт).

Особенности транспортного уровня

Обеспечение более высокой надежности, в отличии от сети, которая используется для передачи данных. Применяются надежные каналы связи, ошибки в этих КС происходят редко, следовательно, можно строить надежную сеть, которая будет стоить дешево, а ошибки можно исправлять программно на хостах.

Транспортный уровень гарантирует доставку данных, он использует подтверждение от получателя, если подтверждение не пришло транспортный снова отправляет подтверждение данных. Гарантия следования сообщений.

Сеансовый уровень (SESSION )

Сеансовый (сессия) – это набор сетевых взаимодействий, целенаправленных на решение единственной задачи.

Сейчас сетевое взаимодействие усложнилось и не состоит из простых вопросов и ответов, как было раньше. Например, Вы загружаете веб страничку, чтобы показать в браузере, сначала нужно загрузить сам текст веб страницы (.html), стилевой файл (.css), который описывает элементы оформления веб страницы, загрузка изображений. Таким образом, чтобы выполнить задачу, загрузить веб страницу, необходимо реализовать несколько, отдельных сетевых операций.

Сеансовый определяет, какая будет передача информации между 2-мя прикладными процессами: полудуплексной (по очередная передача и прием данных); или дуплексной (одновременная передача и прием информации).

Уровень представления данных (PRESENTATION )

Функции – представить данные, передаваемых между прикладными процессами, в необходимой форме.

Для описания этого уровня, используют автоматический перевод в сети с различных языков. Например, Вы набираете номер телефона, говорите на русском, сеть автоматом переводит на французский язык, передает информацию в Испанию, там человек поднимает трубку и слышит Ваш вопрос на испанском языке. Это задача, пока не реализована.

Для защиты отправляемых данных по сети используется шифрование: secure sockets layer, а также transport layer security, эти технологии позволяют шифровать данные которые отправляются по сети.

Протоколы прикладного уровня используют TSL/SSL и их можно отличить по букве s в конце. Например, https, ftps и другие. Если в браузере Вы видите, что используется протокол https и замок, это значит, что производится защита данных по сети при помощи шифрования.

(APPLICATION)

Необходим для взаимодействия между собой сетевых приложений, таких как web, e-mail, skype и тд.

По сути, представляет собой комплект спецификаций, позволяющих пользователю осуществлять вход на страницы для поиска нужной ему информации. Проще говоря, задачей application является обеспечение доступа к сетевым службам. Содержимое этого уровня очень разнообразно.

Функции application :

  • Решение задач, отправка файлов; управление заданиями и системой;
  • Определение пользователей по их логину, e-mail адресу, паролям, электронным подписям;
  • Запросы на соединение с иными прикладными процессами;

Видео о всех уровнях модели OSI

Заключение

Анализ проблем с помощью сетевых моделей OSI поможет быстро найти и устранить их. Недаром работа над проектом программы, способной выявить недочеты имея при этом сложное ступенчатое устройство, велась достаточно долго. Данная модель является в действительности эталоном. Ведь в одно время с ней велись работы по созданию других протоколов. Например, . На сегодняшний день, они довольно часто применяются.

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

На практике при реализации сетей стремятся использовать стандартные протоколы, которые могут быть фирменные, национальные или международные стандарты.

В период с 1977 по 1984 год профессионалы разработали модель сетевой архитектуры под названием «рекомендуемая модель взаимодействия открытых систем» (the Reference Model of Open Systems Interconnection, OSI). Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели нанимает более 1000 страниц текста.

Термин «рекомендуемая модель взаимодействия открытых систем» часто встре­чается в литературе под названием «модельISO/ OSI», отмечая вклад ISO в ее формирование. Для некоторых профессиональных сетевых программистов эта модель представляет собой образец идеальной сетевой архитектуры.

Модель ISO/OSI использует деление на уровни, чтобы организовать общее представление о структуре сети в виде четко определенных, взаимосвязанных модулей. В сети, поделенной на уровни, каждый уровень служит для исполнения опре­деленной функции или службы сети по отношению к окружающим соседним уровням. Каждый уровень как бы защищает соседний от избыточной информа­ции, способной просочиться от более низкого уровня наверх. Гра­мотно спроектированный уровень должен скрывать все особенности своего функционирования от вышележащего. Опираясь на эти положения, можно создавать сеть, состоящую их функциональных модулей с четко описанным интерфейсом.

В модели ISO/OSI (рис. 22) средства взаимодействия делятся на семь уровней: прикладной, представительский (уровень представления), сеансовый, транспортный, сетевой, канальный (уровень соединения) и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств. Модель описывает системные средства взаимодействия, реализуемые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает спецификации взаимодействия приложений конечных пользователей. Свои собственные протоколы взаимодействия приложения реализуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень.

На рисунке 22 изображена простая сеть, созданная на основе модели ISO/OSI. Сеть состоит из двух компьютеров, которые, в свою очередь, составлены из уровней. Стрелки, соединяющие уровни, показывают путь следо­вания данных в сети. Для каждого уровня существует соответствующий протокол (транспортный протокол, сетевой протокол).


Каждый уровень пользуется различными единицами измерения количества данных. Уровни приложения (прикладной уровень), представления, сеансовый, транспортный, - используют термин « сообщением» в качестве единицы измере­ния. Сетевой уровень трактует данные как « пакеты» , а уровень соединения - как « кадр» . Физический уровень имеет дело с битами - последовательностью нулей и единиц

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса, программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования coобщения, прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и дополняет к полученному сообщению служебную информацию - заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня машины-адресата.



Полученное в результате сообщение передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. Рисунок 23 иллюстрирует вложенность сообщений различных уровней.

Некоторые peализации протоколов помещают служебную информацию не только в начале сообщения, но и в конце, в виде так называемого «концевика ». Наконец, сообщение достигает нижнего, физическою уровня, который собственно и передает его по сетям машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней (рис. 22). Когда cooбщение попадает на машину-адресат, оно принимается ее физическим уровнем и передается вверх с уровня на уровень. Каждый уровень анализирует и заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему yровню.

Наряду с термином сообщение существуют и другие термины, применяемые сетевыми специалистами для обозначения единиц данных в процедурах обмена. В стандартах ISO для обозначения единиц данных, с которыми имеют дело протоколы разных уровней, используется общее название протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней, часто используются специальные названия: пакет (packet), дейтаграмма (datagram), сегмент (segment).

В модели OSI различаются два основных типа протоколов. В протоколах с установлением соединения, перед обменом данными отправитель и получатель должны сначала установить соединение и, возможно, выбрать некоторые параметры протокола, которые они будут использовать при обмене данными. После завершения диалога они должны разорвать соединение. Телефон - это пример взаимодействия, основанного на установлении соединения.

Вторая группа протоколов - протоколы без предварительного установления соединения . Отправитель просто передает сообщение, когда оно готово. Опускание письма в почтовый ящик - это пример связи без предварительного установления соединения. При взаимодействии компьютеров используются протоколы обоих типов.

Рассмотрим более подробно функции каждого уровня.

Физический уровень состоит из физических элементов (hardware), служащих непосредственно для передачи информации по сетевым каналам связи. Поэтому линии связи - кабели, соединяющие компьютеры, - относятся к физическому уровню. К нему же относятся и методы электрического преобразования сигна­лов. Различные сетевые технологии, такие как Ethernet, ARCNET, или token ring, относятся к физическому уровню, как задающие параметры преобразова­ния сигналов для передачи по сети. Физический уровень передает данные по битам.

На физическом уровне определяется тип передачи данных: симплексный, полудуплексный или дуплексный.

Канальный уровень или уровень соединения. Задача уровня соединения - передать данные от физического уровня к сетевому и наоборот. Канальный уровеньпревращает данные из последовательности битов в нечто более понятное для сетевого уровня, часто называемое «кадр данных» (кадром данных обычно называют отформатированный уровнем соединения поток битов, поступающий от физического уровня).

Наоборот, канальный уровеньпринимает кадры от сетевого с целью преобразовать их в поток битов, соблюдая правильный формат, для физического уровня. Основная функция уровня соединения - обеспечивать целостность данных, поэтому формат кадра включает необходимую для этого информацию.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольнуюсумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обя­зательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

Кадр данных содержит также информацию, необходимую для его правильной идентификации и маршрутизации .

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канально­го уровня реализуются совместными усилиями сетевых адаптеров и их драйверов. Сетевая карта в компьютере - пример реализации уровня соединения.

В глобальных сетях, которые редко обладают регулярной топологией, каналь­ный уровень часто обеспечивает обмен сообщениями только между двумя соседни­ми компьютерами, соединенными индивидуальной линией связи.

Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов при­кладного уровня или приложений, без привлечения средств сетевого и транспорт­ного уровней.

Тем не менее для обеспечения качественной транспортировки сообщений в се­тях любых топологий и технологий функций канального уровня оказывается недо­статочно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный .

Сетевой уровень это внутрисетевая первичная служба доставки и служит для образования единой транспортной системы, объединяющей несколько сетей , причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Поскольку сетевой уровень заведует общесетевой информацией о маршрутиза­ции, ему и принадлежит функция подсчетаколичестваданных . Он также следит за трафиком , возможными столкновениями и скоростями передачи по каналам связи.

На сетевомуровне сам термин «сеть» наделяют специфическим значением. В дан­ном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уров­нем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор - это устройство, которое собирает инфор­мацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения.

Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно со­вершить некоторое количество транзитных передач между сетями, каждый раз выбирая подходящий маршрут. Таким образом, марш­рут представляет собой последовательность маршрутизаторов, через которые про­ходит пакет.

На рис. 24 показаны четыре сети, связанные тремя маршрутизаторами. Меж­ду узлами А и В данной сети пролегают два маршрута: первый через маршрутиза­торы 1 и 3, а второй через маршрутизаторы 1, 2 и 3.


Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осу­ществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сооб­щений по связям с нестандартной структурой. Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets). При органи­зации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части - номера сети и млад­шей - номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину «сеть» на сетевом уровне можно дать и другое, более формальное определение: сеть - это совокупность узлов, сетевой ад­рес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов. Первый вид - сетевые протоколы (routed protocols) - реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршру­тизации (routing protocols). С помощью этих протоколов маршрутизаторы собира­ют информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программ­ными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP.

Транспортный уровень так же, как сетевой уровень доставляет пакеты по сети. Транспортный уровень доставляет (транспортирует) данные между самими компьютерами. Как только сетевой уровень доставит данные компьютеру-получателю, в работу вступает транспортный протокол, доставляя данные к прикладному процессу.

Транспортный уровень обеспечивает приложениям или верх­ним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг, срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между раз­личными прикладными протоколами через общий транспортный протокол, а глав­ное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими прило­жениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного - сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уров­ня, не обремененных многочисленными приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя макси­мум средств для обнаружения и устранения ошибок.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализу­ются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно при­вести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

В сети с переключением пакетов транспортный уровень должен фрагментировать данные, поступающие с сеансового уровня на пакеты меньшего размера, с тем, чтобы передать их дальше на сетевой уровень. Принимающая сторона, наоборот, должна собрать данные из пакетов меньшего размера в большие, с тем, чтобы передать на вышележащий уровень.

От транспортного уровня зависит количество пакетов, путешествующих по сети. Другими словами, транспортный уровень генерирует трафик пакетов данных, которым должен управлять сетевой уровень.

Транспортный уровень управляет пропускной способностью сети. Под пропускной способностью (bandwidth) подразумевается максимальное количество данных, проходящих в заданный интервал времени по каналу связи. Для увеличения пропускной способности (и производительности) транспортный уровень открывает несколько сетевых соединений для одного и того же транс­портного соединения. Чтобы сделать это, транспортному уровню требуется мультиплексировать и демультиплексировать передаваемые данные. Термин «мультиплексирование» означает процесс, укладывающий несколько потоков данных в один коммуникационный канал. Термин «демультиплексирование» означает обратное действие. Транспортный уровень передающего компьютера мультиплексирует (объединяет) множество сообщений в одно транспортное соединение. Принимающий данные транспортный уровень, наоборот, демультиплексирует одно соединение во множество сообщений.

Протоколы нижних четырех уровней обобщенно называют сетевым транспор­том или транспортной подсистемой, так как они полностью решают задачу транс­портировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имею­щейся транспортной подсистемы.

Сеансовый уровень в качестве пользовательского сетевого интерфейса решает такие задачи по обработке соединений между процессами и приложениями на различных компьютерах, как обработка имен, паролей и прав доступа. Сеансовый уровень преобразует формат данных, подготовленных для передачи по сети, в формат, годный для передачи приложениям. В дополнение он обрабатывает запросы на изменение таких параметров соединения, как скорость передачи и контроль ошибок. Сеансо­вый уровень устраняет возможность потери данных приложением.

С этого момента непосредственный обмен байтов приобретает внутренний смысл. Лишь этот уровень позволяет выполнять такие функции, как обращение к каталогу сервера.

Сеансовый уровень обеспечивает также управление обменом, фиксируя, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней конт­рольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоко­лов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Уровень представления объединяет в себе некоторые общие функции, которые сеть неоднократно использует при сетевых соединениях. Уровень представления образует интерфейс сети к устройствам компьютера, таким как принтеры, мониторы, форматы файлов. Уровень представления определяет, как сеть выглядит с точки зрения программного обеспечения и аппаратуры сетевого компьютера. Сообщения, поступающие от нижних уровней, подготавливаются необходимым образом для приложения.

За счет уровня представления информация, передаваемая прикладным уровнем одной си­стемы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне происходит, к примеру, преобразование данных, если принимающий компьютер использует другой формат числа, чем посылающий компьютер. На этом уровне может выполняться шифрование и де­шифрование данных, благодаря которому секретность обмена данными обеспечи­вается сразу для всех прикладных служб.

Уровень приложения. На этом уровне сконцентрированы функции, относящиеся к общесетевым при­ложениям и с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощыо протокола электронной почты. Приклад­ные программы вроде электронной почты, браузера или распределенной базы данных - образец использования функций уровня приложения.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Сетезависимые и сетенезависимые уровни. Функции всех уровней модели ISO/OSI могут быть отнесены к одной из двух групп. Либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями (рис. 25).

Три нижних уровня - физический, канальный и сетевой - являются сетизависимыми, то есть протоколы этих уровней тесно связаны с технической реализаци­ей сети и используемым коммуникационным оборудованием. Переход на другое оборудование означает полную смену протоколов физического и каналь­ного уровней во всех узлах сети.

Три верхних уровня - прикладной, представительный и сеансовый - ориенти­рованы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию AnyLAN не по­требует никаких изменений в программных средствах, реализующих функции при­кладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функ­ционирования нижних уровней от верхних. Это позволяет разрабатывать прило­жения, не зависящие от технических средств непосредственной транспортировки сообщений.

Контрольные вопросы:

1. Что такое модель ISO\OSI?

2. Сколько и какие уровни включает в себя модель ISO\OSI?

3. Опишите функции каждого уровня модели ISO\OSI.

4. Из чего состоят сообщения на каждом уровне.

5. Поясните понятие «вложенность сообщений различных уровней»



Понравилась статья? Поделиться с друзьями: