Первый уровень терминал многоуровневой архитектуры клиент сервер. Многоуровневые системы клиент-сервер

Преимущества

· Делает возможным, в большинстве случаев, распределение функций вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера не затрагивают клиентов.

· Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

· Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т. п.

Недостатки

· Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

· Поддержка работы данной системы требует отдельного специалиста - системного администратора.

· Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

В компьютерных технологиях трёхуровневая архитектура, синоним трёхзвенная архитектура (англ. three-tier или Multitier architecture) предполагает наличие следующих компонентов приложения: клиентское приложение (обычно говорят «тонкий клиент» или терминал), подключенное к серверу приложений, который в свою очередь подключен к серверу базы данных.

Обзор архитектуры

Клиент - это интерфейсный (обычно графический) компонент, который представляет первый уровень, собственно приложение для конечного пользователя. Первый уровень не должен иметь прямых связей с базой данных (по требованиям безопасности), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надежности). На первый уровень может быть вынесена и обычно выносится простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на терминал.

Сервер приложений располагается на втором уровне. На втором уровне сосредоточена бо́льшая часть бизнес-логики. Вне его остаются фрагменты, экспортируемые на терминалы (см.выше), а также погруженные в третий уровень хранимые процедуры и триггеры.

Сервер базы данных обеспечивает хранение данных и выносится на третий уровень. Обычно это стандартная реляционная или объектно-ориентированная СУБД. Если третий уровень представляет собой базу данных вместе с хранимыми процедурами, триггерами и схемой, описывающей приложение в терминах реляционной модели, то второй уровень строится как программный интерфейс, связывающий клиентские компоненты с прикладной логикой базы данных.

В простейшей конфигурации физически сервер приложений может быть совмещён с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько терминалов.

В «правильной» (с точки зрения безопасности, надёжности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений, к которым, в свою очередь, по сети подключаются терминалы.

Достоинства

По сравнению с клиент-серверной или файл-серверной архитектурой можно выделить следующие достоинства трёхуровневой архитектуры:

· масштабируемость

· конфигурируемость - изолированность уровней друг от друга позволяет (при правильном развертывании архитектуры) быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней

· высокая безопасность

· высокая надёжность

· низкие требования к скорости канала (сети) между терминалами и сервером приложений

· низкие требования к производительности и техническим характеристикам терминалов, как следствие снижение их стоимости. Терминалом может выступать не только компьютер, но и, например, мобильный телефон.

Недостатки

Недостатки вытекают из достоинств. По сравнению c клиент-серверной или файл-серверной архитектурой можно выделить следующие недостатки трёхуровневой архитектуры:

· более высокая сложность создания приложений;

· сложнее в разворачивании и администрировании;

· высокие требования к производительности серверов приложений и сервера базы данных, а, значит, и высокая стоимость серверного оборудования;

· высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений.


Классическая архитектура клиент-сервер

Термин "клиент-сервер" означает такую архитектуру программного комплекса, в которой его функциональные части взаимодействуют по схеме "запрос-ответ". Если рассмотреть две взаимодействующие части этого комплекса, то одна из них (клиент) выполняет активную функцию, т. е. инициирует запросы, а другая (сервер) пассивно на них отвечает. По мере развития системы роли могут меняться, например некоторый программный блок будет одновременно выполнять функции сервера по отношению к одному блоку и клиента по отношению к другому.

Заметим, что любая информационная система должна иметь минимум три основные функциональные части - модули хранения данных, их обработки и интерфейса с пользователем. Каждая из этих частей может быть реализована независимо от двух других. Например, не изменяя программ, используемых для хранения и обработки данных, можно изменить интерфейс с пользователем таким образом, что одни и те же данные будут отображаться в виде таблиц, графиков или гистограмм. Не меняя программ представления данных и их хранения, можно изменить программы обработки, например изменив алгоритм полнотекстового поиска. И наконец, не меняя программ представления и обработки данных, можно изменить программное обеспечение для хранения данных, перейдя, например, на другую файловую систему.

В классической архитектуре клиент-сервер приходится распределять три основные части приложения по двум физическим модулям. Обычно ПО хранения данных располагается на сервере (например, сервере базы данных), интерфейс с пользователем - на стороне клиента, а вот обработку данных приходится распределять между клиентской и серверной частями. В этом-то и заключается основной недостаток двухуровневой архитектуры, из которого следуют несколько неприятных особенностей, сильно усложняющих разработку клиент-серверных систем.

При разбиении алгоритмов обработки данных необходимо синхронизировать поведение обеих частей системы. Все разработчики должны иметь полную информацию о последних изменениях, внесенных в систему, и понимать эти изменения. Это создает большие сложности при разработке клиент-серверных систем, их установке и сопровождении, поскольку необходимо тратить значительные усилия на координацию действий разных групп специалистов. В действиях разработчиков часто возникают противоречия, а это тормозит развитие системы и вынуждает изменять уже готовые и проверенные элементы.

Чтобы избежать несогласованности различных элементов архитектуры, пытаются выполнять обработку данных на одной из двух физических частей - либо на стороне клиента ("толстый" клиент), либо на сервере ("тонкий" клиент, или архитектура, называемая "2,5- уровневый клиент-сервер"). Каждый подход имеет свои недостатки. В первом случае неоправданно перегружается сеть, поскольку по ней передаются необработанные, а значит, избыточные данные. Кроме того, усложняется поддержка системы и ее изменение, так как замена алгоритма вычислений или исправление ошибки требует одновременной полной замены всех интерфейсных программ, а иначе могут возникнуть ошибки или несогласованность данных. Если же вся обработка информации выполняется на сервере (когда такое вообще возможно), то возникает проблема описания встроенных процедур и их отладки. Дело в том, что язык описания встроенных процедур обычно является декларативным и, следовательно, в принципе не допускает пошаговой отладки. Кроме того, систему с обработкой информации на сервере абсолютно невозможно перенести на другую платформу, что является серьезным недостатком.

Большинство современных средств быстрой разработки приложений (RAD), которые работают с различными базами данных, реализует первую стратегию, т. е. "толстый" клиент обеспечивает интерфейс с сервером базы данных через встроенный SQL. Такой вариант реализации системы с "толстым" клиентом, кроме перечисленных выше недостатков, обычно обеспечивает недопустимо низкий уровень безопасности. Например, в банковских системах приходится всем операционистам давать права на запись в основную таблицу учетной системы. Кроме того, данную систему почти невозможно перевести на Web-технологию, так как для доступа к серверу базы данных используется специализированное клиентское ПО.

Итак, рассмотренные выше модели имеют следующие недостатки.

1. "Толстый" клиент:
# сложность администрирования;
# усложняется обновление ПО, поскольку его замену нужно производить одновременно по всей системе;
# усложняется распределение полномочий, так как разграничение доступа происходит не по действиям, а по таблицам;
# перегружается сеть вследствие передачи по ней необработанных данных;
# слабая защита данных, поскольку сложно правильно распределить полномочия.

2. "Толстый" сервер:
# усложняется реализация, так как языки типа PL/SQL не приспособлены для разработки подобного ПО и нет хороших средств отладки;
# производительность программ, написанных на языках типа PL/SQL, значительно ниже, чем созданных на других языках, что имеет важное значение для сложных систем;
# программы, написанные на СУБД-языках, обычно работают недостаточно надежно; ошибка в них может привести к выходу из строя всего сервера баз данных;
# получившиеся таким образом программы полностью непереносимы на другие системы и платформы.

Для решения перечисленных проблем используются многоуровневые (три и более уровней) архитектуры клиент-сервер.

Многоуровневые архитектуры клиент-сервер

Такие архитектуры более разумно распределяют модули обработки данных, которые в этом случае выполняются на одном или нескольких отдельных серверах. Эти программные модули выполняют функции сервера для интерфейсов с пользователями и клиента - для серверов баз данных. Кроме того, различные серверы приложений могут взаимодействовать между собой для более точного разделения системы на функциональные блоки, выполняющие определенные роли. Например, можно выделить сервер управления персоналом, который будет выполнять все необходимые для управления персоналом функции. Связав с ним отдельную базу данных, можно скрыть от пользователей все детали реализации этого сервера, разрешив им обращаться только к его общедоступным функциям. Кроме того, такую систему очень просто адаптировать к Web, поскольку проще разработать html-формы для доступа пользователей к определенным функциям базы данных, чем ко всем данным.

В трехуровневой архитектуре "тонкий" клиент не перегружен функциями обработки данных, а выполняет свою основную роль системы представления информации, поступающей с сервера приложений. Такой интерфейс можно реализовать с помощью стандартных средств Web-технологии - браузера, CGI и Java. Это уменьшает объем данных, передаваемых между клиентом и сервером приложений, что позволяет подключать клиентские компьютеры даже по медленным линиям типа телефонных каналов. Кроме того, клиентская часть может быть настолько простой, что в большинстве случаев ее реализуют с помощью универсального браузера. Но если менять ее все-таки придется, то эту процедуру можно осуществить быстро и безболезненно. Трехуровневая архитектура клиент-сервер позволяет более точно назначать полномочия пользователей, так как они получают права доступа не к самой базе данных, а к определенным функциям сервера приложений. Это повышает защищенность системы (по сравнению с обычно архитектурой) не только от умышленного нападения, но и от ошибочных действий персонала.

Для примера рассмотрим систему, различные части которой работают на нескольких удаленных друг от друга серверах. Допустим, что от разработчика поступила новая версия системы, для установки которой в двухуровневой архитектуре необходимо одновременно поменять все системные модули. Если же этого не сделать, то взаимодействие старых клиентов с новыми серверами может привести к непредсказуемым последствиям, так как разработчики обычно не рассчитывают на такое использование системы. В трехуровневой архитектуре ситуация упрощается. Дело в том, что поменяв сервер приложений и сервер хранения данных (это легко сделать одновременно, так как оба они обычно находятся рядом), мы сразу меняем набор доступных сервисов. Таким образом, вероятность ошибки из-за несоответствия версий серверной и клиентской частей резко сокращается. Если в новой версии какой-либо сервис исчез, то элементы интерфейса, обслуживавшие его в старой системе, просто не будут работать. Если же изменился алгоритм работы сервиса, то он будет корректно работать даже со старым интерфейсом.

Многоуровневые клиент-серверные системы достаточно легко можно перевести на Web-технологию - для этого достаточно заменить клиентскую часть универсальным или специализированным браузером, а сервер приложений дополнить Web-сервером и небольшими программами вызова процедур сервера. Для разработки этих программ можно использовать как Common Gateway Interface (CGI), так и более современную технологию Java.

Следует отметить и тот факт, что в трехуровневой системе по каналу связи между сервером приложений и базой данных передается достаточно много информации. Однако это не замедляет вычислений, так как для связи указанных элементов можно использовать более скоростные линии. Это потребует минимальных затрат, поскольку оба сервера обычно находятся в одном помещении. Таким образом, увеличивается суммарная производительность системы - над одной задачей теперь работают два различных сервера, а связь между ними можно осуществлять по наиболее скоростным линиям с минимальными затратами средств. Правда, возникает проблема согласованности совместных вычислений, которую призваны решать менеджеры транзакций - новые элементы многоуровневых систем.

]. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Среди многоуровневой архитектуры клиент-сервер наиболее распространена трехуровневая архитектура ( трехзвенная архитектура , three- tier ), предполагающая наличие следующих компонентов приложения: клиентское приложение (обычно говорят "тонкий клиент" или терминал ), подключенное к серверу приложений , который в свою очередь подключен к серверу базы данных [ , ].

рис. 5.4 .


Рис. 5.4. Представление многоуровневой архитектуры "клиент-сервер"

  • Терминал – это интерфейсный (обычно графический) компонент, который представляет первый уровень, собственно приложение для конечного пользователя. Первый уровень не должен иметь прямых связей с базой данных (по требованиям безопасности), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надежности). На первый уровень может быть вынесена и обычно выносится простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на терминал .
  • Сервер приложений располагается на втором уровне. На втором уровне сосредоточена большая часть бизнес-логики. Вне его остаются фрагменты, экспортируемые на терминалы , а также погруженные в третий уровень хранимые процедуры и триггеры.
  • Сервер базы данных обеспечивает хранение данных и выносится на третий уровень. Обычно это стандартная реляционная или объектно-ориентированная СУБД. Если третий уровень представляет собой базу данных вместе с хранимыми процедурами, триггерами и схемой, описывающей приложение в терминах реляционной модели, то второй уровень строится как программный интерфейс, связывающий клиентские компоненты с прикладной логикой базы данных.

В простейшей конфигурации физически сервер приложений может быть совмещен с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько терминалов .

В "правильной" (с точки зрения безопасности, надежности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений , к которым, в свою очередь, по сети подключаются терминалы .

Плюсами данной архитектуры являются [ , , , ]:

  • клиентское ПО не нуждается в администрировании;
  • масштабируемость;
  • конфигурируемость – изолированность уровней друг от друга позволяет быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней;
  • высокая безопасность;
  • высокая надежность;
  • низкие требования к скорости канала (сети) между терминалами и сервером приложений ;
  • низкие требования к производительности и техническим характеристикам терминалов , как следствие снижение их стоимости.
  • растет сложность серверной части и, как следствие, затраты на администрирование и обслуживание;
  • более высокая сложность создания приложений;
  • сложнее в разворачивании и администрировании;
  • высокие требования к производительности серверов приложений и сервера базы данных , а, значит, и высокая стоимость серверного оборудования;
  • высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений .
  1. Представление;
  2. Уровень представления;
  3. Уровень логики;
  4. Уровень данных;
  5. Данные.


Рис. 5.5. Пять уровней многозвенной архитектуры "клиент-сервер"

К представлению относится вся информация, непосредственно отображаемая пользователю: сгенерированные html-страницы, таблицы стилей, изображения.

Уровень представления охватывает все, что имеет отношение к общению пользователя с системой. К главным функциям слоя представления относятся отображение информации и интерпретация вводимых пользователем команд с преобразованием их в соответствующие операции в контексте логики и данных.

Уровень логики содержит основные функции системы, предназначенные для достижения поставленной перед ним цели. К таким функциям относятся вычисления на основе вводимых и хранимых данных, проверка всех элементов данных и обработка команд, поступающих от слоя представления, а также передача информации уровню данных.

Уровень доступа к данным – это подмножество функций, обеспечивающих взаимодействие со сторонними системами, которые выполняют задания в интересах приложения.

Данные системы обычно хранятся в базе данных.

5.1.6. Архитектура распределенных систем

Такой тип систем является более сложным с точки зрения организации системы. Суть распределенной системы заключается в том, чтобы хранить локальные копии важных данных .

Схематически такую архитектуру можно представить, как показано на рис. 5.6 .


Рис. 5.6.

Более 95 % данных, используемых в управлении предприятием, могут быть размещены на одном персональном компьютере, обеспечив возможность его независимой работы . Поток исправлений и дополнений, создаваемый на этом компьютере, ничтожен по сравнению с объемом данных, используемых при этом. Поэтому если хранить непрерывно используемые данные на самих компьютерах, и организовать обмен между ними исправлениями и дополнениями к хранящимся данным, то суммарный передаваемый трафик резко снизится. Это позволяет понизить требования к каналам связи между компьютерами и чаще использовать асинхронную связь, и благодаря этому создавать надежно функционирующие распределенные информационные системы, использующие для связи отдельных элементов неустойчивую связь типа Интернета, мобильную связь, коммерческие спутниковые каналы. А минимизация трафика между элементами сделает вполне доступной стоимость эксплуатации такой связи. Конечно, реализация такой системы не элементарна, и требует решения ряда проблем, одна из которых своевременная синхронизация данных.

Каждый АРМ независим, содержит только ту информацию, с которой должен работать, а актуальность данных во всей системе обеспечивается благодаря непрерывному обмену сообщениями с другими АРМами. Обмен сообщениями между АРМами может быть реализован различными способами, от отправки данных по электронной почте до передачи данных по сетям.

Для решения перечисленных проблем используются многоуровневые (три и более уровней) архитектуры клиент-сервер.

Такие архитектуры более разумно распределяют модули обработки данных, которые в этом случае выполняются на одном или нескольких отдельных серверах. Эти программные модули выполняют функции сервера для интерфейсов с пользователями и клиента - для серверов баз данных. Кроме того, различные серверы приложений могут взаимодействовать между собой для более точного разделения системы на функциональные блоки, выполняющие определенные роли.

Например, можно выделить сервер управления персоналом, который будет выполнять все необходимые для управления персоналом функции. Связав с ним отдельную базу данных, можно скрыть от пользователей все детали реализации этого сервера, разрешив им обращаться только к его общедоступным функциям. Кроме того, такую систему очень просто адаптировать к Web, поскольку проще разработать html-формы для доступа пользователей к определенным функциям базы данных, чем ко всем данным.

В трехуровневой архитектуре клиент не перегружен функциями обработки данных, а выполняет свою основную роль системы представления информации, поступающей с сервера приложений. Такой интерфейс можно реализовать с помощью стандартных средств Web-технологии - браузера, CGI и Java. Это уменьшает объем данных, передаваемых между клиентом и сервером приложений, что позволяет подключать клиентские компьютеры даже по медленным линиям типа телефонных каналов. Кроме того, клиентская часть может быть настолько простой, что в большинстве случаев ее реализуют с помощью универсального браузера. Но если менять ее все-таки придется, то эту процедуру можно осуществить быстро и безболезненно.Трехуровневая архитектура клиент-сервер позволяет более точно назначать полномочия пользователей, так как они получают права доступа не к самой базе данных, а к определенным функциям сервера приложений. Это повышает защищенность системы (по сравнению с обычно архитектурой) не только от умышленного нападения, но и от ошибочных действий персонала.

Для примера рассмотрим систему, различные части которой работают на нескольких удаленных друг от друга серверах. Допустим, что от разработчика поступила новая версия системы, для установки которой в двухуровневой архитектуре необходимо одновременно поменять все системные модули. Если же этого не сделать, то взаимодействие старых клиентов с новыми серверами может привести к непредсказуемым последствиям, так как разработчики обычно не рассчитывают на такое использование системы. В трехуровневой архитектуре ситуация упрощается. Дело в том, что поменяв сервер приложений и сервер хранения данных (это легко сделать одновременно, так как оба они обычно находятся рядом), мы сразу меняем набор доступных сервисов. Таким образом, вероятность ошибки из-за несоответствия версий серверной и клиентской частей резко сокращается. Если в новой версии какой-либо сервис исчез, то элементы интерфейса, обслуживавшие его в старой системе, просто не будут работать. Если же изменился алгоритм работы сервиса, то он будет корректно работать даже со старым интерфейсом.

Многоуровневые клиент-серверные системы достаточно легко можно перевести на Web-технологию - для этого достаточно заменить клиентскую часть универсальным или специализированным браузером, а сервер приложений дополнить Web-сервером и небольшими программами вызова процедур сервера. Для разработки этих программ можно использовать как Common Gateway Interface (CGI), так и более современную технологию Java.

Следует отметить и тот факт, что в трехуровневой системе по каналу связи между сервером приложений и базой данных передается достаточно много информации. Однако это не замедляет вычислений, так как для связи указанных элементов можно использовать более скоростные линии. Это потребует минимальных затрат, поскольку оба сервера обычно находятся в одном помещении. Таким образом, увеличивается суммарная производительность системы - над одной задачей теперь работают два различных сервера, а связь между ними можно осуществлять по наиболее скоростным линиям с минимальными затратами средств. Правда, возникает проблема согласованности совместных вычислений, которую призваны решать менеджеры транзакций - новые элементы многоуровневых систем.

Перевод с английского: Чернобай Ю. А.

Развитие клиент-серверных систем

Архитектура компьютерной системы развилась наряду со способностями аппаратных средств использовать запускаемые приложения. Самой простой (и самой ранней) из всех была «Mainframe Architecture», в которой все операции и функционирование производятся в пределах серверного (или "host") компьютера. Пользователи взаимодействовали с сервером через «dumb» терминалы, которые передали инструкции, захватив нажатие клавиши, серверу и показали результаты выполнения инструкций для пользователя. Такие приложения носили типичный характер и, несмотря на относительно большую вычислительную мощность серверных компьютеров, были в основном относительно медленными неудобными в использовании, из-за необходимости передавать каждое нажатие клавиши серверу.

Введение и широкое распространение PC, с его собственной вычислительной мощностью и графическим пользовательским интерфейсом позволяли приложениям стать более сложными, и расширение сетевых систем привело к второму главному типу архитектуры системы, "Файловому разделению". В этой архитектуре PC (или "рабочая станция") загружает файлы от специализированного "файл сервера" и затем управляет приложением (включая данные) локально. Это работает хорошо, когда невелико использование общих данных, обновление данных, и объем данных, которые будут переданы. Однако скоро стало ясно, что разделение файла все больше засоряло сеть, и приложения становились более сложными и требовали, чтобы все большее количество данных было передано в обоих направлениях.

Проблемы, связанные с обработкой приложениями данных через файл, разделенный по сети, привели к развитию архитектуры клиент-сервер в начале 1980-ых. В этом подходе файл сервер заменен сервером баз данных, который, вместо того, чтобы просто передать и сохранить файлы подключенным рабочим станциям (клиентам), получает и фактически выполняет запросы о данных, возвращая только результат, запрашиваемый клиентом. Передавая только данные, запрашиваемые клиентом, а не весь файл, эта архитектура значительно уменьшает нагрузку на сеть. Это позволило создать систему, в которой множество пользователей могли обновлять данные через GUI интерфейсы, связанные с единственной разделенной базой данных.

Обычно для обмена данными между клиентом и сервером используется либо Structured Query Language (SQL) либо Remote Procedure Call (RPCs). Ниже описаны несколько основных вариантов организации архитектуры клиент-сервер.

В двухуровневой архитектуре нагрузка распределяется между сервером (в котором находится база данных) и клиентом (в котором находится пользовательский интерфейс). Как правило, они расположены на разных физических машинах, но это является не обязательным требованием. При условии, что уровни логически отделены, они могут быть размещены (например, для разработки и тестировании) на одном компьютере (рис. 1).

Рисунок 1: Двухуровневая архитектура

Распределение логики приложения и обработки данных в этой модели был и остается проблематичным. Если клиент «smart» и проводит основную обработку данных то появляются проблемы, связанные с распространением, установкой и обслуживании приложения, поскольку каждый клиент нуждается в собственной локальной копии программного обеспечения. Если клиент «dumb» применение логики и обработки должны быть реализованы в базе данных, а, следовательно, он становится полностью зависимым от конкретной используемой СУБД. В любом случае, каждый клиент должен пройти регистрацию и в зависимости от полученных им прав доступа выполнять определенные функции. Тем не менее, двухуровневая архитектура клиент-сервер была хорошим решением, когда количество пользователей было относительно небольшим (примерно до 100 одновременно работающих пользователей), но с ростом пользователей появился ряд ограничений на использование этой архитектуры.

Производительность: Так как количество пользователей растет, производительность начинает ухудшаться. Ухудшение производительности прямопропорциональна количеству пользователей, каждый из которых имеет собственное подключение к серверу, что означает, что сервер должен поддерживать все эти соединения (с использованием "Keep-Alive" сообщения), даже когда работа с базой не ведется.

Безопасность: Каждый пользователь должен иметь собственный индивидуальный доступ к базе данных, и обладать правами, предоставленными для эксплуатирования приложения. Для этого необходимо хранить права доступа для каждого пользователя в базе данных. Когда нужно добавить функциональности приложению и нужно обновить пользовательские права.

Функциональность: Независимо от того, какой тип клиента используется, большая часть обработки данных должна находиться в базе данных, это означает, что она полностью зависит от возможностей предусмотренных в базе данных производителем. Это может серьезно ограничить функциональность приложения, поскольку различные базы данных поддерживают различные функции, используют различные языки программирования и даже реализуют такие основные средства, как триггеры по-разному.

Мобильность: Двухуровневая архитектура настолько зависит от конкретной реализации базы данных, что перенос существующих приложений для различных СУБД, становится серьезной проблемой. Это особенно очевидно в случае приложений на вертикальных рынках, где выбор СУБД не определен поставщиком.

Но, несмотря на это, двухуровневая архитектура нашли новую жизнь в эпоху интернета. Она может хорошо работать в разъединенной окружающей среде, где UI является «dumb» (например браузер). Однако, во многих отношениях это реализация представляет собой возврат к первоначальной архитектуре мэйнфреймов.

В стремлении преодолеть ограничения двухуровневой архитектуры, описанных общих чертах выше, был введен дополнительный уровень. Такая архитектура является стандартной моделью клиент-сервер с трехуровневой архитектурой. Цель дополнительного уровня (обычно его называют «middle» или «rules» уровень) - управлять прикладным выполнением и управлением базой данных. Как и с двухуровневой моделью, уровни могут располагаться или на различных компьютерах (рисунок 2), или на одном компьютере в тестовом режиме.

Рисунок 2: Трехуровневая архитектура

Введя средний ряд, ограничения двухуровневой архитектуры в значительной степени были устранены, в результате получилась намного более гибкая, и масштабируемая, система. Так как теперь клиенты соединяются только с прикладным сервером, а не непосредственно к серверу данных, нагрузка на сохранение соединений удаляется, как и необходимость осуществить прикладную логику в пределах базы данных. База данных теперь может выполнять только функции хранения и поиска данных, а задачу приема и обработки заявок могут выполняет средний уровень трехуровневой архитектуры. Развитие операционных систем, включающее такие элементы, как пул соединений, очереди и обработки распределенных транзакций укрепил (и упростил) развитие среднего уровня.

Обратите внимание на это, в этой модели, прикладной сервер не управляет интерфейсом пользователя, и при этом пользователь фактически не обращается с запросами непосредственно к базе данных. Вместо этого это позволяет многочисленным клиентам разделять деловую логику, вычисления, и доступ к поисковой системе данных. Главное преимущество состоит в том, что клиент требует меньше программного обеспечения и ему больше не нужен прямое подключение к базе данных, что повышает безопасность. Следовательно приложение более масштабируемо, затраты на поддержку и установку на один сервер значительно меньшие, чем для поддержания приложений прямо на компьютере клиента или даже на двухуровневую архитектуру.

Есть много вариантов основных трехуровневых моделей, предназначенных для выполнения различных функций. К ним относятся обработка распределенных транзакций (когда несколько СУБД обновляются в одном протоколе), приложения, базирующиеся на сообщениях (где приложения не общаются в режиме реального времени) и кросс-платформенной совместимости (Object Request Broker или «ORB» приложения).

Многоуровневая архитектура или N-уровневая архитектура

С развитием интернет приложений на фоне общего повышения количества пользователей основная трехуровневая клиент-серверная модель была расширена путем введения дополнительных уровней. Такие архитектуры называют «"многоуровневые», обычно они состоят из четырех уровней (рисунок 3), где в сети сервер отвечает за обработку соединение между клиентом браузером и сервером приложений. Выгода заключается в том, что несколько веб-серверов могут подключаться к одному серверу приложений, тем самым, увеличивая обработку большего числа одновременно подключенных пользователей.

Рисунок 3: N-уровневая архитектура

Уровни против слоев

Эти термины (к сожалению) часто путают. Однако между ними большая разница и имеют определенный смысл. Основное отличие заключается в том, что уровни находятся физическом уровне, а слои на логическом. Иными словами уровень, теоретически, может быть развернут независимо на отдельном компьютере, а слой логическое разделение внутри уровня (рисунок. 4). Типичная трехуровневая модель, описанная выше, как правило, содержит, по меньшей мере семь слоев, разделенных на всех трех уровнях.

Главное, что нужно помнить о многоуровневой архитектуре является то, что запросы и ответы каждого потока в одном направлении проходят по всем слоям, и что слои никогда не может быть пропущены. Таким образом, в модели, показанной на рисунке 4, единственный слой, который может обратиться к слою "E" (слой доступа к данным) является слой "D" (слой правил). Аналогичным образом слой "C" (прикладной слой ратификации) может только отвечать на запросы из слоя "B" (слоя обработка ошибок).

Рисунок 4: Ряды разделены на логические слои



Понравилась статья? Поделиться с друзьями: