Внешний регулятор напряжения для автомобильного генератора. Реле регулятора напряжения генератора: устройство и принцип работы. Как установить трехуровневый регулятор

Выход из строя реле-регулятора – наиболее частая причина неисправности автомобильных генераторов. Именно поэтому с проверки регулятора обычно начинают контроль работоспособности узлов генератора.

В большинстве случаев это можно сделать самостоятельно даже без его снятия.

Принцип работы регулятора напряжения генератора

Генератор – один из наиболее консервативных узлов автомобилей. Разработанная в середине 60-х годов схема осталась практически неизменной вплоть до наших дней за исключением элементной базы.

Схема

В общем виде схему автомобильного генератора можно изобразить так:

Она содержит следующие основные узлы:

  • выпрямительный мост 5 и 6;
  • выпрямительный мост питания реле-регулятора 7;
  • щетки обмотки возбуждения 10;
  • обмотка возбуждения (якорь) 9;
  • обмотка статора 8;
  • индикаторная лампа 4;
  • аккумуляторная батарея 3;
  • контактная группа замка зажигания 1;
  • конденсатор 2 (может отсутствовать).

Общий принцип работы генераторов переменного тока придумал гениальный Тесла. Постоянный ток через обмотку возбуждения индуцирует магнитное поле. Во время вращения катушки возбуждения (якоря) внутри обмотки статора в последних генерируется переменное напряжение.

Это напряжение преобразуется в постоянное выпрямителем, выполненным на диодном мосте 5 и 6. Выпрямленное напряжение .

Чем выше ток в обмотке возбуждения, тем будет выше напряжение генератора.

Какую функцию выполняет реле-регулятор? По существу, он является усилителем с обратной связью. То есть, как только повышается напряжение, его схема уменьшает ток через обмотку возбуждения.

Соответственно, напряжение генератора уменьшается. Тогда он повышает ток обмотки, напряжение генератора увеличивается. И так до бесконечности. В конечном счете, напряжение генератора стабилизируется на определенном уровне. Весь этот процесс стабилизации длится доли секунды.

Виды

Реле-регуляторы классифицируют по элементной базе исполнения :

  • релейные;
  • транзисторно-релейные;
  • транзисторные (в автомобилях до 90-х годов);
  • интегральные (в современных автомобилях);
  • микропроцессорные с программным управлением (Audi, BMW).

По конструктивному исполнению :

  • внешние, закрепляемые на элементах кузова;
  • встроенные;
  • встроенные, совмещенные со щетками.

В современных автомобилях чаще всего используют устройства, совмещенные со щетками. В этом есть свой недостаток: когда изнашиваются щетки, приходится менять и реле-регулятор. И наоборот, отказ реле-регулятора может привести к замене здоровых щеток.

Некоторые специалисты меняют только щетки, расположенные совместно с реле-регулятором. Это не лучший вариант из соображений надежности, тем более стоимость реле-регуляторов распространенных автомобилей не так велика и может быть даже ниже стоимости замены щеток.

Возможные причины неисправности

В качестве основных причин неисправностей реле-регуляторов напряжения генераторов рассматриваются:

  • межвитковое замыкание обмотки возбуждения. Наиболее опасная причина неисправности. После замены реле-регулятора генератор определенное время работает без проблем. Но регулятор работает при повышенных токах и через пару месяцев вновь перегорает. В этом случае необходимо снимать генератор и везти его на тестирование;
  • выход из строя выпрямительного моста (пробой диодов). Менее опасен, тем более данная неисправность вызывает перегрев генератора, и диоды меняются в первую очередь;
  • переполюсовка или перепутывание полюсов аккумулятора. В этом случае выходят из строя и выпрямительные диоды;
  • разрушение щеток;
  • короткое замыкание на управляющем выводе реле-регулятора;
  • естественный износ.

Последствия неисправного реле-регулятора могут быть существенны:

  • повышенное напряжение генератора может привести к выходу из строя электронных блоков автомобиля, поэтому нельзя при заведенном двигателе;
  • внутреннее замыкание реле-регулятора приводит к перегреву обмотки возбуждения и, в конечном счете, более дорогостоящему ремонту;
  • разрушение щеток реле-регулятора может вызвать окончательную поломку генератора, его заклиниванию, обрыву ремня и более серьезным последствиям.

Основные признаки неисправности

Самый первый признак неисправности — отсутствие свечения контрольной лампочки (индикатора) на приборной панели при включении зажигания.

В возрастных машинах, где схема заряда аккумулятора аналогична, показанной на первом рисунке, автолюбителям еще рано паниковать. Возможно, это просто перегорела лампочка или нарушился контакт, и эти случаи довольно часты. Автовладельцы снимают генератор, везут на тестирование, а зря.

Второй признак – индикатор «аккумулятор» не гаснет после запуска двигателя. Это уже свидетельствует о нарушении процесса заряда и возможной неисправности генератора.

Еще один признак неисправности – яркость ближнего-дальнего света зависит от оборотов двигателя. Кстати, такую проверку рекомендуется производить регулярно. Для этого необходимо в темное время суток остановиться в неоживленном месте напротив какого-нибудь здания и на нейтралке погазовать, включив дальний свет. Изменение яркости свидетельствует о возможных проблемах с системой заряда.

Запах горелой обмотки в салоне также признак неисправности генератора, но его можно не почувствовать.

Как самостоятельно проверить реле-регулятор генератора мультиметром или лампой

В случае подозрения на неисправность системы заряда аккумулятора проверку следует начинать с контроля напряжения на АКБ при заведенном двигателе. Оно должно быть в пределах 13,3 – 14,5 Вольт. Напряжение более 15 Вольт – верный признак неисправности реле-регулятора.

Видео — как проверить реле-регулятор без регулируемого источника питания:

Иногда есть еще один для управления тахометром. Следует прозвонить управляющий провод на массу. Сопротивление ниже 10 Ом также будет свидетельствовать о неисправности реле-регулятора.

Следующие проверки следует производить на снятом с генератора реле-регуляторе. В большинстве случаев это можно и следует делать, не демонтируя генератор. Реле-регулятор обычно крепится на генераторе двумя-тремя болтиками или винтами.

После этого необходимо собрать простенькую схему.

или другой ее вариант

В качестве лампочки можно взять обычную салонную лампу. Ее свечение будет свидетельствовать об исправности реле-регулятора. На снятом реле также следует проверить состояние щеток.

В интернете можно найти схемы проверки практически для любого вида реле-регуляторов напряжения генераторов.

В том случае, если результаты проверки оказались отрицательными, следует менять регулятор. Обычно его стоимость не превышает 2000 рублей для распространенных марок.

При малейшем подозрении на неисправность системы заряда аккумулятора (изменении яркости свечения ламп, моргании индикаторной лампы, трудности запуска двигателя, перегреве устройства и других) следует немедленно проверить работоспособность генератора, особенно в холодное время года.

Для того, чтобы генератор прослужил дольше, соблюдайте следующие простые правила:

  • не допускайте чрезмерного загрязнения генератора (он имеет технологические отверстия для проветривания, туда может попадать грязь), производите очистку его поверхности;
  • периодически производите проверку натяжения ремня;
  • следите за состоянием обмоток статора, это можно сделать через технологические отверстия, они должны быть не потемневшими;
  • плохой контакт управляющего провода может привести к выходу из строя реле-регулятора;
  • для предотвращения перезаряда аккумулятора и выхода из строя электронных систем автомобиля периодически проверяйте напряжение на аккумуляторе при заведенном двигателе (напряжение заряда).

И пусть ваш генератор прослужит дольше!

Видео — как проверить регулятор напряжения генератора VALEO в автомобилях РЕНО:

Может заинтересовать:


Уникальный автомобильный сканер Scan Tool Pro

Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют «шоколадка». Недостатки этого регулятора известны всем — низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.

Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.


Рис.1.

Принцип работы

При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 — в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 — 14,2В возникает пробой стабилитрона.

Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 — 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 — 300 Гц, которая определяется инерционностью магнитного потока.

Конструкция

При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.

Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.

Настройка

Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 — 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 — 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме «Общ”, а лампочку накаливания подключают к клемме «Ш» и клемме «Общ” регулятора.

Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.

Электрооборудование любого автомобиля включает в себя генератор - устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Что такое регулятор напряжения генератора?

Поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить увеличивается.

Проверка регулятора напряжения

Прежде чем проверить регулятор напряжения, нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?». В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим. Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить. Для проверки нам понадобится:

– провода;

– аккумулятор автомобильный;

– лампочка на 12в 1-3Вт;

– две обычные пальчиковые батарейки.

Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков. Исправный регулятор напряжения: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

Трехуровневые регуляторы напряжения

Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро. А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения. У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

Летом, особенно когда жара превышает +25 градусов и выше - желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

Как снять или заменить регулятор напряжения?

Перед заменой регулятора напряжения, обязательно проверьте генератор в целом (Как проверить генератор?). Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в). Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.


Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D».

- Снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора.

Находим регулятор напряжения, и крестовой отверткой откручиваем его крепления.

Вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов.

Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения, для того, чтобы избавиться от просадок напряжения в бортовой сети.

Подписывайтесь на наши ленты в

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме "звезда" (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора ("Форд Сиерра" также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора ("Ланос" или отечественная "девятка" у вас - не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения имеет устаревшую конструкцию - он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, "копеек", иномарок одинаково. Как только произведете снятие, посмотрите на щетки - у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора "Бош" (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Содержание:

Напряжение – это фактически и есть электричество. Оно существует как первородная сила, воздействие которой на любые объекты влечет за собой последствия, обусловленные их свойствами. Поэтому возможность управлять напряжением, его величиной означает влиять на ход множества процессов в электрических цепях. А это самое главное в прикладной электротехнике. Далее расскажем о том, как управлять электричеством, пользуясь тиристором.

Такие разные напряжения

Напряжение может быть с разными свойствами. Поэтому даже законы, описывающие те или иные явления, связанные с электричеством, ограничены в применении. Например, закон Ома для участка цепи. И таких примеров множество. Поэтому, оговаривая свойства электрического регулятора, необходимо точно указывать, какое именно напряжение подразумевается, В общем рассматриваются две главные его разновидности – постоянное и переменное.

Они, как начало и конец некоего интервала, внутри которого расположены в огромном разнообразии импульсные сигналы. И ранее, и сейчас, и, скорее всего, в будущем регулировать величину их всех может лишь один элемент – резистор. То есть регулируемый резистор – реостат. Он всегда обеспечивает один и тот же эффект, независимо от вида напряжения. Причем в любой момент времени. А момент времени применительно к переменному или импульсному сигналу, – это основа его определения.

Какое напряжение регулирует тиристор

Ведь в зависимости от него величина напряжения меняется. Резистором можно управлять сигналом в любой момент времени. А вот тиристором такой результат невозможно получить, потому что он ключ. У него только два состояния:

  • с минимальным сопротивлением, когда ключ замкнут;
  • с максимальным сопротивлением, когда ключ разомкнут.

Следовательно, тиристор для мгновенного значения напряжения не может рассматриваться как его регулятор. Только в пределах достаточно большого интервала времени, при котором учитываются многие мгновенные значения сигнала, тиристор может рассматриваться как регулятор напряжения. Поскольку такая величина именуется как действующее значение, будет правильным уточнить определение регулятора как

  • тиристорный регулятор действующего напряжения.

Как соединить ключ и нагрузку

Наиболее привлекательной характеристикой тиристоров с самого начала их появления была стойкость к силе тока большой величины. Как следствие, эти полупроводниковые приборы нашли широкое применение во множестве мощных устройств. Однако в любом случае, когда рассматривается электрический регулятор, существует электрическая цепь с нагрузкой. В эквиваленте нагрузка представляется как резистор с некоторым импедансом.

Чтобы напряжение на этом резисторе изменилось, необходимы дополнительные элементы, которые соединены с ним либо последовательно, либо параллельно. Первые тиристоры были незапираемыми. Их можно было открыть (включить) в любой момент. Но для выключения необходимо было уменьшить силу тока до некоторого минимального значения. По этой причине незапираемые тиристоры применяются и по сей день лишь в электрических цепях переменного или выпрямленного тока.

На постоянном напряжении они тоже использовались, но весьма ограниченно. Например, в первых фотовспышках с управляемой силой света. Свет лампы фотовспышки, который путем управления тиристором формирует необходимое освещение объекта, дает наглядное представление о тиристоре как об электрическом регуляторе для лампы – нагрузки. Энергию для этого обеспечивал конденсатор, который разряжался через специальную лампу. И в этом случае получалась вспышка наибольшей силы.

Но для того чтобы лампа давала меньше света, параллельно с ней включался тиристор. Лампа включалась и освещала объект. А специальный оптический датчик со схемой управления следил за его характеристиками. И в нужный момент включал тиристор. Он шунтировал лампу, которая выключалась со скоростью срабатывания тиристора. При этом часть энергии конденсатора просто исчезала в виде тепла, не принося никакой пользы. Но в то время иначе и не могло быть – запираемых тиристоров еще не было.

Типы тиристоров и отличия схем для их использования

Тиристор запирался, поскольку зарядный ток конденсатора был подобран с учетом этого. Безусловно, схема с последовательным соединением тиристора и нагрузки существенно эффективнее. И она широко применяется. Все диммеры, которыми пользуются для управления освещением и электробытовыми приборами, работают по такой схеме. Но в них могут быть существенные отличия в связи с типом используемого тиристора. Схема с симметричным тиристором, который работоспособен на переменном напряжении при непосредственном соединении с нагрузкой, получается более простой.

Но если сравнивать симметричные тиристоры с обычными, пропускающими ток в одном направлении, сразу обращает на себя внимание заметно более широкий модельный ряд последних. К тому же предельные электрические параметры у них заметно больше. Но при этом обязательно наличие выпрямителя. Если регулируется сеть 220 В, необходим выпрямительный мост, в котором 4 мощных диода. Но каждый полупроводниковый прибор, независимо от того, транзистор это, тиристор или диод, характеризуется остаточным напряжением.

Оно мало изменяется в соответствии с силой тока, протекающего через него. И при этом на каждом из полупроводниковых приборов рассеивается тепло. Если токи достигают единиц ампер, тепловая мощность составит единицы ватт. Потребуются охлаждающие радиаторы. А это – ухудшение конструктивных показателей. Поэтому симисторные регуляторы более компактны и экономичны. Чтобы отказаться от выпрямительного моста, применяют схему из двух одинаковых тиристоров, соединенных параллельно и встречно.

Безусловно, это более экономичное решение относительно потерь. Однако у ключей должны быть соответствующие предельные обратные напряжения. А это значительно ограничивает число их моделей, пригодных для этой схемы. К тому же, получить симметричные полуволны, управляя двумя ключами, сложнее, чем при одном тиристоре. Но при большой силе тока, которая в промышленных установках может составлять сотни ампер и более на включенном тиристоре, рассеивается мощность в сотни ватт. Динамические потери еще больше разогревают ключи.

По этой причине уменьшение числа полупроводниковых приборов в мощных электрических регуляторах – это важнейшая задача. Далее на изображениях показаны промышленные тиристорные регуляторы напряжения. В современном ассортименте тиристоров среди моделей, выпускаемых серийно, присутствуют запираемые ключи. Они могут быть использованы в цепях постоянного тока.

Поэтому задачи регулирования напряжения в тысячи вольт при мощностях, величина которых измеряется мегаваттами, сегодня успешно решаются различными моделями тиристоров.



Понравилась статья? Поделиться с друзьями: