Технические каналы связи определение. Основные понятия и характеристики каналов связи. Среда и методы передачи данных в вычислительных сетях

Канал связи - это совокупность средств, предназначенных для передачи сигналов (сообщений).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи : проводные; кабельные; оптико-волоконные; линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов : непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности : каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала Tк, ширины спектра частот, пропускаемых каналом Fк и динамического диапазона Dк., который характеризует способность канала передавать различные уровни сигналов Vк = Tк Fк Dк. (1) Условие согласования сигнала с каналом: Vc Vk; Tc Tk; Fc Fk; Vc Vk; Dc Dk.

2. Скорость передачи информации - среднее количество информации, передаваемое в единицу времени.

3.Пропускная способность канала связи - наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность - обеспечивает достоверность передаваемой информации (R = 01).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех. Канал связи образно можно сравнивать с дорогами. Узкие дороги - малая пропускная способность, но дешево. Широкие дороги - хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом. Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные - витая пара. Скорость передачи до 1 Мбит/с.

2. Коаксиальный кабель . Скорость передачи 10-100 Мбит/с

3. Оптико-волоконная . Скорость передачи 1 Гбит/с.

Радиолинии :

Радиоканал . Скорость передачи 100-400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости.

Микроволновые линии . Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10-200 км. Используются для телефонной связи, телевидения и передачи данных.

Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором.

Теорема Шеннона для каналов без помех всегда можно создать систему эффективного кодирования дискретных сообщений, у которой среднее количество двоичных кодовых сигналов на один символ сообщения будет приближаться как угодно близко к энтропии источника сообщений.

Пусть источник сообщений имеет производительность H ¢(U) = u C ×H(U), а канал имеет пропускную способность C = u K ×log M. Тогда можно закодировать сообщения на выходе источника таким образом, чтобы получить среднее число кодовых символов приходящихся на элемент сообщения h = u K /u C = (H(U)/ log M)+e (2.2), где e - сколь угодно мало (прямая теорема). Получить меньшее значение h невозможно (обратная теорема). Обратная часть теоремы утверждающая, что невозможно получить значение h = u K / u C < H(U)/ log M (2.3), может быть доказана если учесть, что неравенство (2.3) эквивалентно неравенству u C × H(U) > u K × log M, H¢ (U) > C. Последнее неравенство не может быть выполнено т.к. рассматриваемое кодирование должно быть обратимым преобразованием (т.е. без потерь информации). Энтропия в секунду на входе канала или производительность кодера не может превышать пропускную способность канал. А энтропия принимаемых сигналов определяется из условия максимального значения H’(y)= log m.

Теорема Шеннона для дискретного канала с шумом называется так же основной теоремой кодирования Шеннона. Если производительность источника сообщений H¢ (U) меньше пропускной способности канала С т.е. H¢(U)< C, то существует такая система кодирования которая обеспечивает возможность передачи сообщений источника со сколь угодно малой вероятностью ошибки (или со сколь угодно малой ненадежностью).

Если H¢(U) > C, то можно закодировать сообщение таким образом, что ненадежность в единицу времени будет меньше чем H¢(U)-C+ e, где e ®0 (прямая теорема).

Не существует способа кодирования обеспечивающего ненадежность в единицу времени меньшую, чем H¢(U)-C (обратная теорема).

В такой формулировке эта теорема была дана самим Шенноном. В литературе часто вторая часть прямой теоремы и обратная теорема объединяются в виде обратной теоремы сформулированной так: если H¢(U) > C, то такого способа кодирования не существует.

2. Типы сигналов, их дискретизация и восстановление. Спектральная плотность сигналов. Частота Найквиста, теорема Котельникова. Частотное представление дискретных сигналов. Ортогональные преобразования дискретных сигналов. Задачи интерполяции и прореживания сигналов.

Типы сигналов, их дискретизация и восстановление

По видам (типам) сигналов выделяются следующие:

1. аналоговый

2. дискретный

3. цифровой

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов , как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (―аналогичен‖) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp /2.8]. При этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y J , t J . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -Ґ до +Ґ . Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y Ј , Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk, где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при Dt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Дискретизация, восстановление (интерполяция) сигналов.

Процесс дискретизации - это процесс получения значений величин преобразуемого сигнала в определенные промежутки времени (отсчеты ).

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.

Принципы дискретизации . Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени .Представление сигнала s(t) на интервале Т совокупностью дискретных значений записывается в виде:

(с1, с2, ... , cN) = А,

где А - оператор дискретизации. Запись операции восстановления сигнала s(t):

s"(t) = В[(с1, с2, ... , cN)].

Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:

(5.1.1)

Где - система весовых функций.

Отсчеты в выражении (5.1.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s() в моменты времени . Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени Dt между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/Dt, если значение Dt постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение Dt между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.

Восстановление сигналов

Восстановление непрерывного сигнала по выборкам может проводиться как на основе ортогональных, так и неортогональных базисных функций. Воспроизводящая функция s"(t) соответственно представляется аппроксимирующим полиномом:

Где система базисных функций. Ортогональные базисные функции обеспечивают сходимость ряда к s(t) при n Ю Ґ . Оптимальными являются методы дискретизации, обеспечивающие минимальный числовой ряд при заданной погрешности воспроизведения сигнала. При неортогональных базисных функциях используются, в основном, степенные алгебраические полиномы вида:

Если значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим. В качестве интерполирующих полиномов обычно используются многочлены Лагранжа. Для реализации интерполирующих полиномов необходима задержка сигнала на интервал дискретизации, что в системах реального времени требует определенных технических решений. В качестве экстраполирующих полиномов используют, как правило, многочлены Тейлора.

Естественным требованием к выбору частоты дискретизации является внесение минимальных искажений в динамику изменения сигнальных функций. Логично полагать, что искажения информации будут тем меньше, чем выше частота дискретизации F. С другой стороны также очевидно, что чем больше значение F, тем большим количеством цифровых данных будут отображаться сигналы, и тем большее время будет затрачиваться на их обработку. В оптимальном варианте значение частоты дискретизации сигнала F должно быть необходимым и достаточным для обработки информационного сигнала с заданной точностью, т.е. обеспечивающим допустимую погрешность восстановления аналоговой формы сигнала (среднеквадратическую в целом по интервалу сигнала, либо по максимальным отклонениям от истинной формы в характерных информационных точках сигналов).

Квантование сигнала .

Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем случае случайных, конечным множеством цифровых отсчетов, и выполняется округлением мгновенных значений входной функции s(ti) в моменты времени ti до ближайших значений si(ti) = niDs, где Ds- шаг квантования шкалы цифровых отсчетов. Квантование с постоянным шагом Ds называется равномерным. Математически операция квантования может быть выражена формулой:

где скобки [..] означают целую часть значения в скобках.

При квантовании сигналов в большом динамическом диапазоне значений шаг квантования может быть и неравномерным, например, логарифмическим, т.е. пропорциональным логарифму значений входного сигнала. Установленный диапазон шкалы квантования от smin до smax и шаг квантования Ds определяют число делений шкалы Ns = (smax-smin)/Ds и соответственно цифровую разрядность квантования. В результате дискретизации и квантования непрерывная функция s(t) заменяется числовой последовательностью {s(kDt)}. Погрешность округления ei = s(kDt)-si(kDt) заключена в пределах -Ds/2

При достаточно малом шаге квантования любое значение в его пределах можно считать равновероятным, при этом значения e распределены по равномерному закону:

p(e) = 1/Ds, -Ds/2 Ј e Ј Ds/2.

Соответственно, дисперсия и среднее квадратическое значение шума квантования:

e2 = Ds2/12, » 0.3 Ds. .1)

При задании уровня шума квантования с использованием выражения (5.5.1) нетрудно определить допустимое значение шага квантования.

Входной сигнал содержит, как правило, аддитивную смесь собственно сигнала s(t) и помехи q(t) с дисперсией соответственно sq2. Если помехи не коррелированны с сигналом, то после квантования суммарная дисперсия шумов:

На практике шаг квантования выбирают обычно таким, чтобы не происходило заметного изменения отношения сигнал/шум, т.е. e2<

Для организации передачи данных необходимо использовать линии и каналы связи , которые осуществляют коммуникацию между компьютерами, телефонами, телеграфами и другими средствами связи.

Передаваемая информация находится в физической среде, которая может состоять из различных типов кабелей и проводов, а также окружающего пространства.

Чем отличаются каналы связи от линий связи

Несмотря на то, что оба понятия часто отождествляются, они имеют некоторые различия, о которых нужно знать для построения корректной информационной коммуникации.

По каналам связь передается в одну сторону или в две, если обмен происходит между приемником и передатчиком.

Линии связи, в свою очередь, образовываются от соединения нескольких каналов, также в них может быть только один канал.

Существуют такие линии связи:

  • Проводные;

  • Кабельные;

  • Беспроводные.

Рассмотрим детальнее каждый тип линий и узнаем об их возможностях, достоинствах и недостатках.

Проводные (воздушные) линии связи

Эти линии могут использоваться для передачи телеграфного, телефонного или компьютерного сигнала. Они состоят из проводов, через которые и осуществляется обмен данными. Этот тип связи подходит для передачи цифровых и аналоговых сигналов, потому его популярность достаточно высокая.

К недостаткам такого подключения относится сравнительно невысокая скорость передачи сигнала и низкая степень защищенности от помех.

Также возможно банальное самовольное подключение недобросовестных абонентов, что ведет к снижению качества передачи данных и финансовым потерям компаний-вещателей.

Кабельные линии связи

Структура кабеля может быть разной, но в основном все они состоят из групп проводников, которые обработаны надежной изоляцией.

Для обмена данными в компьютерных сетях используются такие типы кабелей:

  • Витая пара – состоит из двух проводов, изготовленных из меди, которые свиты друг с другом и покрыты неэкранированной или экранированной оболочкой. Такой способ соединения проводников помогает повысить помехоустойчивость, возможно, что в один кабель заключается сразу несколько витых пар проводов. Такое подключение самое дешевое и доступное, монтаж кабелей достаточно простой, что и приводит к несанкционированному подключению к сетям все тех же недобросовестных абонентов.

  • Коаксиальный кабель – состоит из центрального проводника, роль которого исполняет медный провод, и проводящего экрана, чаще всего в его качестве используется алюминиевая фольга или медная оплетка. Между основным проводником и экраном располагается изолирующий материал, внешняя часть экрана также покрыта изоляцией. Этот метод подключения более затратный и трудоемкий, потому несанкционированных подключений меньше. Для таких линий характерна хорошая защищенность от помех и высокая скорость передачи информации.

  • Оптоволоконный кабель – похож по своему строению с коаксиальным, но вместо медного проводника в этом кабеле используется тонкое стекловолокно, роль внутренней изоляции выполняет пластиковая или стеклянная оболочка, которая не позволяет свету выходить, она образовывает полное внутренне отражение. Примечательно, что через волокно сигналы могут проходить исключительно в одну сторону, именно по этой причине в кабелях они расположены попарно. Монтаж таких линий связи очень трудоемкий, сам кабель достаточно чувствительный к повреждениям, но при этом он обеспечивает высочайшую скорость передачи сигнала до 3 Гбит/с. При условии использования оптоволоконного кабеля на стороне передачи должен использоваться преобразователь электрического сигнала в световой, а на стороне приема – преобразователь светового сигнала в электрический.

Беспроводные каналы связи

Линии и каналы связи могут быть построены на работе беспроводных наземных или спутниковых радиоканалов.

Радиорелейные каналы – это группа станций-ретрансляторов, которые располагаются в определенном порядке на определенном отдалении друг от друга.

Станции и ретрансляторы используются в сфере сотовой связи и для передачи других видов сигналов в рамках одного города или региона.

Спутниковая связь обеспечивается спутниками, которые располагаются на земной орбите и являются ретрансляторами. Сигнал от наземной передающей станции идет к спутнику, а от спутника он передается на наземную принимающую станцию.

Такой метод коммуникации позволяет обеспечивать связью жителей самых отдаленных частей планеты, поскольку спутники чаще всего запускаются не по одному, а группами.

Все ретрансляторы располагаются на орбите в некотором отдалении друг от друга, потому вместе они могут охватить почти весь земной шар.

Примеры линий и каналов связи на выставке

Узнать, какие линии и каналы связи используют современные компании, можно на специализированной выставке «Связь» , которая состоится в ЦВК «Экспоцентр».

Выставка будет посвящена новинкам в сфере ИТ. На мероприятии будут представлены последние технические решения для обеспечения коммуникации.

Читайте другие наши статьи:

Государственный экзамен

(State examination)

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».

(Пляскин )


Канал связи. 3

Классификация. 5

Характеристики (параметры) каналов связи. 10

Условие передачи сигналов по каналам связи. 13

Литература. 14


Канал связи

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) - техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.



По типу среды распространения каналы связи делятся на:

Проводные;

Акустические;

Оптические;

Инфракрасные;

Радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе канала – непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала – дискретные сигналы),

· непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),

· дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

1. Классификация по диапазону используемых частот

Ø Километровые (ДВ) 1-10 км, 30-300 кГц;

Ø Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

Ø Декаметровые (КВ) 10-100 м, 3-30 МГц;

Ø Метровые (МВ) 1-10 м, 30-300 МГц;

Ø Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

Ø Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

Ø Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

Ø Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

2. По направленности линий связи

- направленные (используются различные проводники):

Ø коаксиальные,

Ø витые пары на основе медных проводников,

Ø волоконнооптические.

- ненаправленные (радиолинии);

Ø прямой видимости;

Ø тропосферные;

Ø ионосферные

Ø космические;

Ø радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).


3. По виду передаваемых сообщений:

Ø телеграфные;

Ø телефонные;

Ø передачи данных;

Ø факсимильные.

4. По виду сигналов:

Ø аналоговые;

Ø цифровые;

Ø импульсные.

5. По виду модуляции (манипуляции)

- В аналоговых системах связи :

Ø с амплитудной модуляцией;

Ø с однополосной модуляцией;

Ø с частотной модуляцией.

- В цифровых системах связи :

Ø с амплитудной манипуляцией;

Ø с частотной манипуляцией;

Ø с фазовой манипуляцией;

Ø с относительной фазовой манипуляцией;

Ø с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

6. По значению базы радиосигнала

Ø широкополосные (B>> 1);

Ø узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

Ø одноканальные;

Ø многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

Ø односторонние;

Ø двусторонние.
9. По порядку обмена сообщения

Ø симплексная связь - двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;

Ø дуплексная связь - передача и прием осуществляется одновременно (наиболее оперативная);

Ø полудуплексная связь - относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

Ø открытая связь;

Ø закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

Ø неавтоматизированные - управление радиостанцией и обмен сообщениями выполняется оператором;

Ø автоматизированные - вручную осуществляется только ввод информации;

Ø автоматические - процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

Радиовещательные

2. По направлению передачи

Симплексные (передача только в одном направлении)

Полудуплексные (передача поочередно в обоих направлениях)

Дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

Электрические (проводные)

Радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

Аналоговые (непрерывные)

Дискретные по времени

Дискретные по уровню сигнала

Цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) ипоказывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

-- отношение спектра выходного сигнала к входному
- полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

2. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.

3. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

Мощность сигнала на выходе канала,

Мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду - бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.

Основной функцией информационной системы является хранение информации и ее перенос в пространстве. Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. Этими средствами являются передающее устройство, линия связи и приемное устройство. Иногда в понятие система связи включаются источник и потребитель сообщений.

Структурная схема простейшей системы связи представлена на рисунке 2. Здесь исходным пунктом является источник сообщения. Источник может вырабатывать непрерывное или дискретное сообщения. Источником сообщений и получателем в одних системах связи может быть человек, в других - различного рода устройства (автомат, вычислительная машина и т. п.). Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумага, магнитная лента и т.п.) или физического процесса (звуковых или электромагнитных волн, тока и.т.п.).

Источник информации или сообщения - это физический объект, система или явление, формирующие передаваемое сообщение.

Сообщение - это значение или изменение некоторой физической величины, отражающие состояние объекта (системы или явления). Как правило, первичные сообщения - речь, музыка, изображения, измерения параметров окружающей среды и т.д., представляют собой функции времени - f (t) или других аргументов - f (x, y, z) неэлектрической природы (акустическое давление, температура, распределение яркости на некоторой плоскости и т.п.).

Рис.2. Структурная схема системы связи.

Каждое i - ое сообщение источника есть произвольная последовательность элементов алфавита
(
,
, ...,) длиной
m , где верхний индекс у элементов есть номер последовательности, а нижний индекс означает только место буквы в сообщении, но не ее вид.

При m = 1 сообщением является одна буква, то есть такое сообщение есть элементарное сообщение . В общем случае при m > 1 одна и та же буква может появиться в сообщении несколько раз. Общим свойством элементарного сообщения является его неделимость на более мелкие сообщения.

Конечное множество сообщений X c заданным на нем распределением вероятностей p ( x ) называется дискретным ансамблем сообщений и обозначается { X , p ( x )}.

Устройство, преобразующее сообщение в сигнал, называют передающим устройством, а устройство, преобразующее принятый сигнал в сообщение, - приемным устройством.

С помощью преобразователя в передающем устройстве сообщение а , которое может иметь любую физическую природу (изображение, звуковое колебание и т.п.), преобразуется в первичный электрический сигнал b (t ). В телефонии, например, эта операция сводится к превращению звукового давления в пропорционально изменяющийся электрический ток микрофона. В телеграфии сначала производится кодирование, в результате которого последовательность элементов сообщения (букв) заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая затем с помощью телеграфного аппарата преобразуется в последовательность электрических импульсов постоянного тока.

В передатчике первичный сигнал b (t ) (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал u (t ), пригодный для передачи по используемому каналу. Это осуществляется посредством модуляции.

Преобразование сообщения в сигнал должно быть обратимым. В этом случае по выходному сигналу можно, в принципе, восстановить входной первичный сигнал, т. е. получить всю информацию, содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна при передаче, даже если сигнал доходит до приемного устройства без искажений.

Физический процесс, отображающий (несущий) передаваемое сообщение, называется сигналом.

Сигнал – это материально-энергетическая форма представления информации. Другими словами, сигнал – это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение.

Цепь “информация – сообщение – сигнал” – это пример процесса обработки, необходимой там, где находится источник информации. На стороне потребителя информации осуществляется обработка в обратном порядке: “сигнал – сообщение – информация”.

Любое преобразование сообщения в определенный сигнал путем установления между ними однозначного соответствия называют в широком смысле кодированием.

Кодирование может включать в себя процессы преобразования и дискретизации непрерывных сообщений (аналого-цифровое преобразование), модуляцию (манипуляцию в цифровых системах связи) и непосредственно кодирование в узком смысле слова. Обратная операция называется декодированием.

Линией связи называется среда, используемая для передачи сигналов от передатчика приемнику.

В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику. При передаче сигнал может искажаться и на него могут накладываться помехи n (t ).

Приемное устройство обрабатывает принятое колебание z (t )=u (t )+n (t ), представляющее собой сумму пришедшего искаженного сигнала u (t ) и помехи n (t ), и восстанавливает по нему сообщение , которое с некоторой погрешностью отражает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания z (t ) определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В (рис. 3).

Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Часть системы связи, расположенная до точки А , является источником сигнала для этого канала.

Рис. 3. Канал связи.

Канал как источник помех, оказывает на передаваемый сигнал некоторое влияние. Задачами приемника является выделение из зашумленного сигнала переданного сообщения и отправка его потребителю.

Классифицируют каналы связи по различным признакам, в том числе по математическому описанию (непрерывные и дискретные каналы, непрерывного и дискретного времени).

Если сигналы, поступающие на вход канала и принимаемые с его выхода, являются дискретными по состояниям, то канал называется дискретным. Если же эти сигналы являются непрерывными, то канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Из сказанного видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

В данном пособии будем рассматривать дискретный канал связи .

Если вредным действием помех в канале можно пренебречь, то для анализа используется модель в виде идеализированного канала, называемого каналом без помех . В идеальном канале каждому сообщению на входе однозначно соответствует определенное соотношение на выходе и наоборот. Когда требования к достоверности велики и пренебрежение неоднозначностью связи между сообщениями x и y недопустимо, используется более сложная модель – канал с помехами.

Простейший класс моделей каналов образуют дискретные каналы без памяти; они определяются следующим образом. Входом является последовательность букв (элементов) из конечного алфавита, пусть
,
выходом – последовательность букв того же самого или другого алфавита, скажем
. Наконец, каждая буква выходной последовательности зависит статистически только от буквы, стоящей на соответствующей позиции во входной последовательности, и определяется заданной условной вероятностью
, определенной для всех буквалфавита на входе и всех буквна выходе. Примером может служить двоичный симметричный канал (рис.4), который представляет собой дискретный канал без памяти с двоичными последовательностями на входе и выходе, в котором каждый символ последовательности на входе с некоторой вероятностью 1-q воспроизводится на выходе канала правильно и с вероятностью q изменяется шумом на противоположный символ. В общем случае, в дискретном канале без памяти переходные вероятности исчерпывают собой все известные сведения о том, как сигнал на входе, взаимодействуя с шумом, образует сигнал на выходе.

Рис. 4. Двоичный симметричный канал.

Намного более широкий класс каналов – каналов с памятью, образуют каналы, в которых сигналами на входе являются последовательности букв из конечных алфавитов, но в которых каждая буква на выходе может статистически зависеть не только от соответствующей буквы входной последовательности.

"

1. Канал связи

Канал связи -- система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

2 Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет. канал связь удаленный получатель

Т.е. это (канал) -- техническое устройство (техника+среда).

3. Характеристики (параметры) каналов связи

1. Передаточная функция канала: представляется в виде амплитудно-частотной характеристики (АЧХ) и показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

2. Полоса пропускания: является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.


3. Затухание: определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать

затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле:

Где Рвых - мощность сигнала на выходе канала, Рвх - мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи: характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду -- бит/с, а также производных единицах: Кбит/c, Мбит/c, Гбит/с. Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала: характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры) и внешние (они многообразны и зависят от среды передачи). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон: логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.



Понравилась статья? Поделиться с друзьями: