Автоматический телеграфный ключ своими руками. Автоматический телеграфный ключ. Устройство для изменения скорости движения стеклоочистителя

Идея создания телеграфного манипулятора из канцелярских скрепок не нова. Я, в частности, почерпнул ее отсюда: http://www.us7ign.com/?p=631

Элементарно, как видите справится даже ребенок.

Но когда я нашел подходящий кусок текстолита, согнул пару скрепок и скрепил все это болтами, стало ясно, что конструкция слишком легкая.

Для нормальной работы потребуется или прикрепить ее жестко к столу, или как-то утяжелить. Я выбрал второй вариант, плюс купил комплект самоклеящихся резиновых ножек для радиоаппаратуры.

Для утяжеления решил сделать свинцовое основание. Для этого слепил макет основания из пластилина, положил его в морозилку на пару часов (для твердости). В керамической пиале развел финишную гипсовую шпаклевку. Пластилиновую модель смазал техническим вазелином, проколол несколько отверстий в донной части для выхода воздуха и вдавил в наш гипс. Да, пиалу, т.е. опоку, перед заполнением гипсом тоже смазал техническим вазелином. За ночь и полдня форма застыла, я аккуратно выковырял пластилин и поместил ее в духовку для разогрева. Предупреждаю, что разогретые остатки пластилина и солидол прилично дымят при нагреве, так что приготовьтесь обильно проветривать помещение или работайте под вытяжкой. Свинец плавил из старых рыбацких грузил в банке из-под рыбных консервов на газовой плите. Заливать следует в хорошо разогретую форму, иначе застывает неровно, комками. В результате, немного подровняв напильником, получили основание для нашего манипулятора:

Манипулятор делал под левую руку. Большой палец - точки, указательный - тире. В качестве кабеля использовал обрывок наушников для смартфона с миниджеком 3.5 мм. Экран - на центральную скрепку, левый, правый канал - на боковые.

Теперь дело за ключом. В промышленных радиостанциях обычно встроена схема ключа, но я делаю комплект для изучения азбуки Морзе, для тренировки, поэтому стал искать подходящую схему-прототип. Первый вариант собрал по этой схеме: http://www.radionic.ru/node/1026

Схема заработала. Но с некоторыми нюансами. Иногда наблюдаются лаги в виде повторения символов (вместо одного тире - два и т.п.). Видимо, из-за несовершенства манипулятора и, как следствие - дребезга контактов.

Решено было схему несколько доработать, в частности, в плане помехоустойчивости. Для этого по входу от манипулятора установлены триггеры Шмитта.

Окончательная схема, после отладки выглядит так:

На микросхеме DD1 собран генератор точек, работающий так же и в режиме генерации тире. Его частота определяет скорость передачи. Запускается он подачей на вход 6 DD1 логического нуля, формируемого замыканием манипулятора, пропущенным через два триггера Шмитта. Почему два? В микросхеме 4584 аж шесть инверторов, а мне нужно всего два, но повторителя. Включая последовательно два инвертора получаем инверсию инверсии, т.е. повторитель. При этом сигнал уже освобожден от "дребезга". На левой по схеме половине триггера DD2 собран делитель частоты на 2. Таким образом получаем гарантированный "меандр", даже если импульсы задающего генератора не совсем симметричны. Длительность паузы между точками равна длительности точки. Это стандарт кода Морзе. На второй половине триггера DD2 собран так же делитель частоты на 2, но работает он только при замыкании манипулятора в положение "тире", когда снимается логическая единица с его входа "R" (reset). Таким образом, на выходе получаем длительность импульса и паузы в две точки. Генератор точек при этом так же работает. "Двойная точка" складывается с "одинарной точкой" на элементе 2-И-НЕ, таким образом получаем длительность тире в три точки, пауза между тире - одна точка. Это так же относится к стандарту кода Морзе. При изменении частоты генератора точек меняется скорость передачи, но стандартные соотношения остаются в силе. В схеме реализован "самоподхват", т.е. если, скажем, замкнуть манипулятор в положение "тире" на время, меньшее, чем длительность тире, то символ все равно будет выдан до конца, стандартной длительности. То же относится и к точкам. Реализовано это с помощью диодов. На микросхеме DD3 собран звуковой генератор для контроля работы, с его выхода тон НЧ подается через транзисторный усилитель на зуммер. Желаемая частота тона регулируется R7. Выходной сигнал так же индицируется световой сигнализацией на светодиоде HL1. Для коммутации телеграфного передатчика можно использовать реле.

Сборку производил с использованием SMD компонентов. Плата разведена в программе Sprint-Layout, изготовлена методом ЛУТ. После исправления всех выявленных ошибок:

Фото собранного устройства:

Свинец-свинцом, но антискользящий коврик из автомагазина не помешает.

В процессе разработки было допущено несколько ошибок, пришлось оперативно подправлять:

Ключ работает без замечаний, никаких лагов не наблюдается.

Ну и первый вариант ключа я не разбирал. Так что, оказалось у меня их два. Решено было один оставить для тренировки Морзянки, а второй "подружить" с китайским QRP микро-трансивером "Pixie", купленным, в виде конструктора, по случаю, ради любопытства, за 5 у.е. И коробочка из-под чая пригодилась:

Видео работы устройств прилагается.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
C1, C5 Конденсатор 220 нФ 2 SMD 1206 В блокнот
C2, C3 Конденсатор 2.2 нФ 2 SMD 1206 В блокнот
C4 Конденсатор 15 нФ 1 SMD 1206 В блокнот
C6 Конденсатор 47 нФ 1 SMD 1206 В блокнот
C7 Электролитический конденсатор 100 мкФ*10В 1 В блокнот
DD1 Микросхема 4001 1 SMD В блокнот
DD2 Микросхема 4013 1 SMD В блокнот
DD3 Микросхема 4011 1 SMD В блокнот
DD4 Микросхема 4584 1 SMD В блокнот
EP1 Звукоизлучатель LD-BZEN-1212 1 В блокнот
HL1 Светодиод диффузный 1 3 мм В блокнот
R1-3, R6, R10, R12-13 Резистор

100 кОм

7 SMD 1206 В блокнот
R4 Переменный резистор 200 кОм 1 В блокнот
R5, R8, R9 Резистор

20 кОм

3 SMD 1206 В блокнот
R7 Подстроечный резистор 47 кОм 1 SMD В блокнот
R11 Резистор 200 1 0.5Вт В блокнот
VD1-7 Выпрямительный диод

СПОРТИВНАЯ АППАРАТУРА

Экономичный

Среди радиолюбителей широко распространены электронные телеграфные ключи на микросхемах ТТЛ Для них характерны сравнительно большое потребление электроэнергии и. как правило, необходимость стабилизации на пряжения питания Все это затрудняет их питание от батарей. Такая проблема не возникает, если ключ выпол йен на экономичных микросхемах КМОП-структурЫ, например, серии

сопротивление меньше указанного на схеме Элемент DD1.3 обеспечивает раз ряд конденсатора О через резисторы Rl. R2 для выравнивания длительности первого импульса относительно последующих

Триггер DD2.I формирует «точки». «Тире» получают путем сложения в эле менте DD3.I «точки» и «двойной точки», формируемой триггером DD2.2.

На логических элементах DD3.2 - DD3.4 выполнен генератор самоконтро ля. сигнал которого можно слушать через головной телефон BFI или через ре- uicTop R10 подать на усилитель звуковой частоты приемника. Частоту генера-

ШИ КП6ЛЕ5; Ж КП6ТМГ, Ж КЛ6ЛА7

ним UK:^ тах. Резне гор R9 можно

уменьшить до 1 кОм для обеспечения ключевого режима работы транзистора VT2.

В качестве DD2 можно применить микросхему К176ТМ2. при этом ее выходы S (выводы б и 8) нужно соединить с общим проводом. Диоды VDI-VD5 - любые малогабаритные кремниевые, транзисторы VTI-VT3 КТ315 с любым буквенным индексом

Детали телеграфного ключа размещены на печатной плате (рис. 2), изготовленной из одностороннего фоль- гированного материала размерами 65X35 мм

KI76. Принципиальная схема такого ключа приведена на рис. 1.

Тактовый генератор, работающий в ждущем режиме, собран на микросхеме DD1. Резистором R2 регулируют скорость передачи в пределах от 60 до 200 знаков в минуту Если есть необходимость работать с меньшими скоростями, то надо взять резистор R2 с большим номиналом. Если же требуется поднять верхний предел ско ростн, то резистор RI должен иметь

тора устанавливают резистором R5. Его можно не использовать, ио при этом надо подобрать RC по желаемой высоте тона.

Ключ рассчитан дли безконтактной манипуляции передатчика с помощью транзистора VT2 В коллекторную пень VT2 можно включить манипуляционное реле, обмотку которого шунтируют диодом. Реле можно питать и повы шейным напряжением, применив в качестве VT2 транзистор с более высо-

В режиме покоя ключ практически не потребляет электроэнергии, поэтому выключатель питания может отсутствовать.

Работоспособность электронного телеграфного ключа сохраняется при снижении напряжения мигания до 4 В. лишь немного сдвигается шкала ско* роегей н снижается частота тонального генератора

пос. Выхма X. РАУДСЕПП

Эстонской ССР

РАДИО N9 4, 1986 г

Миниатюрный электронный телеграфный ключ MINI CW KEY на микроконтроллере ATtiny13

Этот простой электронный телеграфный ключ разработан Александром Денисовым (RA3RBE) из г. Тамбова. Подробное описание этой конструкции выложено на сайте автора . Кроме того, там Вы сможете ознакомиться с другими не менее интересными его конструкциям, а также задать вопросы.

При разработке этого телеграфного ключа ставилась задача сделать устройство очень простое, доступное для повторения радиолюбителями любого уровня подготовленности, от начинающих до профи.
Кроме этого работа этого устройства должна удовлетворять и малоопытного телеграфиста и радиолюбителя, посвятившего работе на ключе долгие годы.


Принципиальная схема ключа очень проста, ядром этой схемы является микроконтроллер ATTiny13. Он формирует выходной телеграфный сигнал с соотношением 1:3, регулирует скорость передачи в широком диапазоне скоростей, обеспечивает самоконтроль через подключенный миниатюрный капсюль. На выходе ключа стоит MOSFET которым можно управлять непосредственно передатчиком или можно включить в его сток реле, для управления через контакты реле.


Размеры печатной платы ключа: 47х39 мм. Переменный резистор и гнездо для подключения телеграфного ключа установлены таким образом, чтобы плату можно было закрепить к передней панели устройства непосредственно гайками гнезда и переменного резистора "Скорость". На печатной плате имеется джампер для отключения звукосигнализатора, при необходимости. Наборы для самостоятельной сборки укомплектованы уже запрограммированным микроконтролером и панелькой для его установки.

Краткую инструкцию по сборке и состав набора можно увидеть

Стоимость печатной платы (размеры платы 47х39 мм): 50 грн.

Стоимость набора для сборки: 160 грн.

Стоимость собранной и проверенной платы: 190 грн.

Небольшое видео, демонстрирующее работу ключа:

Для покупки наборов обращайтесь (обратите внимание, что в окошке "Код безопасности" необходимо ввести числовой результат указанной арифметической операции) или

Всем удачи, мирного неба, добра, 73!

Автоматический телеграфный ключ

Уже много лет радиолюбители-спортсмены и телеграфисты узлов связи для передачи "морзянки"предпочитают пользоваться автоматическим телеграфным ключом. Такое электронное устройство, управляемое механическим манипулятором, обеспечивает более четкую передачу знаков кода Морзе при меньших нагрузках на пальцы руки оператора. Оно к тому же позволяет легко регулировать скорость передачи знаков телеграфной азбуки, не нарушая при этом принятого соотношения длительности звучания точек и тире (1:3).

Предлагаем для практического использования простой автоматический телеграфный ключ на трех микросхемах серии К155 (рис. 1).

Рис 1. Телеграфный ключ

Он содержит тактовый генератор на элементах DD1.1-DD1.3, формирователь "точек"и "тире"на D-триггерах DD3.1, DD3.2, сумматор импульсов на элементе DD2.4, тональный генератор на элементах DD2.1, DD2.2 и транзисторе VT1, служащий для слухового контроля передачи телеграммы, узел управления передатчиком любительской радиостанции (транзистор VT2 и электромагнитное реле К1) и манипулятор SA1 с элементом DD2.3.

Как работает такой телеграфный ключ? В нейтральном положении манипулятора SA1, когда его якорь не касается боковых контактов, тактовый генератор не работает, так как блокирован напряжением низкого уровня на нижнем по схеме входе элемента DD1.1, соединенном с общим проводом через резистор R3 сравнительно малого сопротивления. Тональный генератор контроля тоже заблокирован напряжением низкого уровня с выхода элемента DD2.4. Этот элемент находится в нулевом состоянии потому, что в это время на прямом выходе триггера DD3.1 и инверсном выходе триггера DD3.2 действует напряжение высокого уровня.

Работу телеграфного ключа иллюстрируют временные диаграммы, показанные на рис. 2.

Рис. 2 Временные диаграммы

Для формирования "тире"якорем манипулятора SA1 касаются левого (по схеме) контакта. Элемент DD2.3 переключается в единичное состояние и выходным напряжением высокого уровня запускает тактовый генератор. С этого момента на выходе согласующего инвертора DD1.4 появляются импульсы тактового генератора (диаграмма а на рис. 2), которые поступают на вход С триггера DD3.1. Период импульсной последовательности тактового генератора, регулируемый переменным резистором R1, равен длительности "точки".

По фронту первого импульса триггер DD3.1 переключается в противоположное состояние, в результате чего на его прямом выходе появляется напряжение низкого уровня, которое переводит элемент DD2.4 в единичное состояние. Одновременно включается тональный генератор, так как теперь на верхнем входе элемента DD2.2 появилось напряжение высокого уровня. Импульсы звуковой частоты усиливает транзистор VT1, включенный эмиттерным повторителем, а с движка переменного резистора R7, включенного в эмиттерную цепь транзистора, импульсы поступают на головные телефоны BF1. Одновременно сработает реле К1, контакты К1.1 которого манипулируют передатчик.

По фронту второго импульса тактового генератора триггер DD3.1 переключается в единичное состояние и перепадом напряжения на инверсном выходе переводит триггер DD3.2 в нулевое состояние (диаграммы б и в на рис. 2). Теперь на нижнем по схеме входе элемента DD2.4 будет напряжение низкого уровня, но единичное состояние этого элемента сохранится еще на время длительности двух "точек"(диаграмма г на рис. 2). Лишь по фронту четвертого импульса тактового генератора, когда оба триггера примут исходное состояние, элемент DD2.4 перейдет в нулевое состояние и выходным напряжением низкого уровня заблокирует тональный генератор. В этот же момент отпустит якорь реле К1. Наступает пауза, которая по длительности равна "точке", начинается следующий цикл формирования знака. Длительность каждого "тире"больше периода "точки"в три раза, что соответствует правилам передачи телеграфной азбуки.

Для формирования "точек"якорь манипулятора SA1 устанавливается в правое положение. При этом элемент DD2.3 вновь оказывается в единичном состоянии и через диод VD1 запускает тактовый генератор. Одновременно на входе R триггера DD3.2 появляется напряжение низкого уровня, в результате чего триггер оказывается заблокированным в нулевом состоянии. Напряжение высокого уровня на инверсном выходе этого триггера не будет препятствовать импульсам, поступающим с прямого выхода триггера DD3.1, воздействовать на элемент DD2.4. На выходе этого элемента будут формироваться "точки"до тех пор, пока якорь манипулятора не будет установлен снова в нейтральное положение.

Каково назначение диодов VD1-VD3? Диод VD1 -развязывающий. Когда элемент DD2.3 переходит в единичное состояние, с его выхода через этот диод на нижний вход элемента DD1.1 поступает напряжение высокого уровня, которое запускает тактовый генератор. Этот диод, кроме того, предотвращает попадание напряжения низкого уровня от элемента DD2.3 на нижний вход элемента DD1.1 в те отрезки времени, когда элемент DD2.4 оказывается в единичном состоянии и выходным напряжением высокого уровня поддерживает тактовый генератор в режиме генерации. Поэтому и "точки", и "тире"будут сформированы полностью, независимо от момента возвращения манипулятора в нейтральное положение.

Диод VD2 также выполняет развязывающую функцию, чтобы напряжение низкого уровня на выходе элемента DD2.4 не препятствовало работе тактового генератора.

Благодаря диоду VD3, независимо от того, в правое или левое положение переведен якорь манипулятора, элемент DD2.4 будет переключаться в единичное состояние.

Благодаря включению транзистора VT1 эмиттерным повторителем сопротивление головных телефонов BF1 не имеет особого значения. Резистор R8 ограничивает коллекторный ток транзистора в случае непреднамеренного замыкания эмиттера транзистора на общий провод.

Чертеж монтажной платы электронной части автоматического телеграфного ключа показан на рис. 3.

Рис. 3 Монтажная схема

Все постоянные резисторы типа МЛТ-0,25, оксидный конденсатор C1-K50-6. Электромагнитное реле К1-РЭС55 (паспорт РС4.569.724). Дроссель L1 наматывают на кольце диаметром 8 и высотой 4 мм из феррита 600НН; он должен содержать 150-200 витков провода ПЭЛШО 0,25.

Если телеграфный ключ пока не предполагается использовать для совместной работы с передатчиком радиостанции, тогда весь узел управления передатчиком, начинающийся с резистора R8, можно исключить. В таком виде устройство поможет успешному освоению скоростного приема на слух и передачи телеграфной азбуки.

Возможная конструкция манипулятора автоматического телеграфного ключа показана на рис. 4.

Рис. 4 Конструкция манипулятора

Основанием 1 манипулятора служат две сложенные вместе пластины из прочного изоляционного материала (например, текстолита), скрепленные по углам винтами 9, 10. Якорь 2 представляет собой пластину длиной 115...120 и шириной 15 ... 18 мм, выпиленную из двустороннего фольгированного стеклотекстолита. Винтами 4 он укреплен между двумя металлическими уголковыми стойками 3 и удерживается в нейтральном положении амортизаторами 6 прямоугольной формы из поролона, приклеенными к основанию.

На уголковых стойках 7 из стали или латуни, укрепленных на основании винтами с потайными головками, находятся регулировочные винты 8, образующие неподвижные контакты манипулятора. Против них с обеих сторон якоря напаивают контакты от контактных пластин негодного электромагнитного реле, например, МКУ-48 или ему подобного. После установки необходимых зазоров между якорем и боковыми контактами регулировочные винты фиксируют гайками 11.

Проводники, соединяющие монтажную плату с манипулятором, -припаивают к лепесткам 5, размещенными под уголковыми стойками.

Читайте и пишите полезные

Данный электронный телеграфный ключ изготовлен с использованием всего двух простых микросхем К155ЛА3 и К155ТМ2. Принципиальная схема очень проста.

На элементах DD1.4 и DD1.1 собран тактовый генератор, частоту которого можно регулировать переменным резистором R1. На элементе DD1.3 выполнен узел запуска генератора. Триггер DD2.1 формирует «точки», DD2.2 - «двойные точки».

Когда манипулятор из среднего положения переводят в положение «Точки», на вывод 9 элемента DD1.3 поступает логический «0». При этом на входы элемента DD1.4 приходит логическая «1», и тактовый генератор начинает формировать прямоугольный импульс.

На инверсном выходе триггера DD2.1 сразу появляется низкий логический уровень, который через диод VD1 подается на узел запуска генератора. Это позволяет формировать «точки» одинаковой длительности независимо от того, когда манипулятор был возвращен в исходное состояние. Импульсы с прямого выхода триггера DD2.1 через диод VD5 поступают на работающий в ключевом режиме транзистор VT1. В его коллекторную цепь включено реле К1, которое коммутирует соответствующие цепи передатчика.

При переводе манипулятора в положение «Тире» на вывод 9 элемента DD1.3 и вывод 5 элемента DD1 2 подается низкий логический уровень. При этом начинает работать тактовый генератор. С инверсного выхода триггера DD2.1. а также с DD2.2 через диоды VD1, VD3, VU4 на элементы DD1.3 и DD1.2 поступает логический «0», обеспечивающий работу тактового генератора на время формирования «тире» нормальной длительности. «Тире» получается путем суммирования на резисторе R3 «точек» и «двойных точек», поступающих с прямых выходов триггеров DD2.1 и DD2.2 через диоды VD5 и VD6.

Детали электронного ключа размещают на печатной плате размерами 65х45 мм.

В ключе можно использовать микросхемы серий К133, К158, К130. Диоды VD1-VD6 — любые импульсные, транзистор VT1 - любой маломощный структуры n-p-n. Реле К1 — РЭС-15 (паспорт РС4.591.002). Вместо него можно применить РЭС-43 (паспорт РС4.569.201) или другие, у которых напряжение срабатывания не превышает 5 В.

Другие схемы и решения телеграфных ключей вы можете скачать



Понравилась статья? Поделиться с друзьями: