10 вольт из компьютерного. Сделаем зарядное устройство из блока питания компьютера. Припаиваем диодную сборку

Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали.


В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3А, но в новых компьютерах это значение ниже 0.1А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100ватт/3.3вольт=30А! Отрицательные напряжения -5 и -12В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.

В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет



Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала - выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и померять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.

Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.





Для наших целей подойдёт абсолютно любой компьютерный БП. Хоть на 250 ватт, хоть на 500. Того тока, что он обеспечит, хватит для радиолюбительского БП с головой.


Переделка компьютерного БП ATX минимальна, и доступна для повторения даже начинающим радиолюбителям. Главное только помнить, что импульсный компьютерный БП ATX имеет на плате много элементов, которые находятся под напряжением сети 220В, поэтому будьте предельно аккуратны при испытаниях и настройке! Изменений каснулась в основном выходная часть БП ATX.




Дело в том, что блок питания от компьютера содержит в себе не только основной мощный преобразователь 300 ватт с шинами +5 и +-12В, но и небольшой вспомогательный источник питания дежурного режима материнской платы. Причём этот небольшой импульсный блок питания абсолютно независимый от основного.


Независимый настолько, что его можно смело выпилить из основной платы и подобрав подходящую коробку использовать для питания каких - нибудь электронных устройств. Доработка каснулась только обвязки микросхемы TL 431, сначала собрал делитель, но затем поступил проще – обычный подстроечник. С ним предел регулировки от 3,6 до 5,5 вольта.




Вот типовая схема компьютерного БП ATX, а ниже приведена схема участка вспомогательного преобразователя дежурного режима.




Естественно в каждом конкретном блоке питания ATX схема будет отличаться. Но принцип думаю понятен.

Аккуратно выпиливаем нужный участок печатной платы с ферритовым трансформатором, транзистором и другими необходимыми деталями и подключив к сети 220В проводим испытания на работоспособность этого блока.





В данном случае на выходе выставил напряжение ровно 4 вольта, ток срабатывания защиты 500ма, так как используется данный ИБП для проверки мобильных телефонов.


Мощность получившегося ИБП не велика, но однозначно выше стандартных импульсных зарядок от мобильных телефонов. Для этой переделки БП подойдёт абсолютно любой компьютерный блок питания ATX .
Для удобства эксплуатации, этот лабораторный блок питания можно снабдить цифровой индикацией тока и напряжения. Выполнить это можно или на микроконтроллере, или на специализированной микросхеме.








обеспечивает следующие параметры и функции:
1. Измерение и индикация выходного напряжения блока питания в диапазоне от 0 до 100В, с дискретностью 0,01В
2. Измерение и индикация выходного тока нагрузки блока питания в диапазоне от 0 до 10А с дискретностью 10 мА
3. Погрешность измерения - не хуже ±0,01В (напряжение) или ±10мА (ток)
4. Переключение между режимами измерения напряжение/ток осуществляется с помощью кнопки с фиксацией в нажатом положении.
5. Вывод результатов измерения на большой четырехразрядный индикатор. При этом три разряда используются для отображения значения измеряемой величины, а четвертый – для индикации текущего режима измерения.
6. Особенность моего вольтамперметра – автоматический выбор предела измерения. Смысл в том, что напряжения 0-10В отображаются с точностью 0,01В, а напряжения 10-100В с точностью 0,1В.
7. Реально делитель напряжения рассчитан с запасом, если измеряемое напряжение увеличивается больше 110В (ну может кому-то надо меньше, можно исправить это в прошивке), на индикаторе отображаются символы перегрузки – O.L (Over Load). Аналогично сделано и с амперметром, при превышении измеряемого тока больше 11А вольтамперметр переходит в режим индикации перегрузки.
Устройство осуществляет измерение и индикацию только положительных значений тока и напряжения, причем для измерения тока используется шунт в цепи «минуса».
Устройство выполнено на микроконтроллере DD1 (МК) ATMega8-16PU.


Технические параметры ATMEGA8-16PU:

Ядро AVR
Разрядность 8
Тактовая частота, МГц 16
Объем ROM-памяти 8K
Объем RAM-памяти 1K
Внутренний АЦП, кол-во каналов 23
Внутренний ЦАП, кол-во каналов 23
Таймер 3 канала
Напряжение питания, В 4.5…5.5
Температурный диапазон, C 40...+85
Тип корпуса DIP28

Количество дополнительных элементов схемы - минимально. (Более полные данные на МК можно узнать из даташита на него). Резисторы на схеме - типа МЛТ-0,125 или импортные аналоги, электролитический конденсатор типа К50-35 или аналогичный, напряжением не менее 6,3В, емкость его может отличаться в большую сторону. Конденсатор 0,1 мкФ - керамический импортный. Вместо DA1 7805 можно применить любые аналоги. Максимальное напряжение питания устройства определяется максимальным допустимым входным напряжением этой микросхемы. О типе индикаторов сказано далее. При переработке печатной платы возможно применение иных типов компонентов, в том числе SMD.

Резистор R… импортный керамический, сопротивление 0,1Ом 5Вт, возможно применение более мощных резисторов, если габариты печатки позволяют установить. Также нужно изучить схему стабилизации тока БП, возможно там уже есть токоизмерительный резистор на 0,1 Ом в минусовой шине. Можно будет использовать по возможности этот резистор. Для питания устройства может использоваться либо отдельный стабилизированный источник питания +5В (тогда микросхема стабилизатора питания DA1 не нужна), либо нестабилизированный источник +7…30В (с обязательным использованием DA1). Потребляемый устройством ток не превышает 80мА. Следует обращать внимание на то, что стабильность питающего напряжения косвенно влияет на точность измерения тока и напряжения. Индикация - обычная динамическая, в определенный момент времени светится только один разряд, но из-за инерционности нашего зрения мы видим светящимися все четыре индикатора и воспринимаем как нормальное число.

Использовал один токоограничительный резистор на один индикатор и отказался от необходимости дополнительных транзисторных ключей, т. к. максимальный ток порта МК в данной схеме не превышает допустимые 40 мА. Путем изменения программы можно реализовать возможность использования индикаторов как с общим анодом, так и с общим катодом. Тип индикаторов может быть любым - как отечественным, так и импортным. В моем варианте применены двухразрядные индикаторы VQE-23 зеленого свечения с высотой цифры 12 мм (это древние, мало-яркие индикаторы, найденные в старых запасах). Здесь приведу его технические данные для справки;

Индикатор VQE23, 20x25mm, ОК, зеленый
Двухразрядный 7-сегментный индикатор.
Тип Общий катод
Цвет зеленый (565nm)
Яркость 460-1560uCd
Десятичные точки 2
Номинальный ток сегмента 20mA

Ниже указано расположение выводов и габаритный чертеж индикатора:


1. Анод H1
2. Анод G1
3. Анод A1
4. Анод F1
5. Анод B1
6. Анод B2
7. Анод F2
8. Анод A2
9. Анод G2
10. Анод H2
11. Анод C2
12. Анод E2
13. Анод D2
14. Общ катод К2
15. Общ катод К1
16. Анод D1
17. Анод E1
18. Анод C1

Возможно использование вообще любых индикаторов как одно-, двух-, так и четырехразрядных с общим катодом, придется только разводку печатной платы под них делать. Плата изготовлена из двухстороннего фольгированного стеклотекстолита, но возможно применение одностороннего, просто надо будет несколько перемычек запаять. Элементы на плате устанавливаются с обеих сторон, поэтому важен порядок сборки:

Сначала необходимо пропаять перемычки (переходные отверстия), которых много под индикаторами и возле микроконтроллера.
Затем микроконтроллер DD1. Для него можно использовать цанговую панельку, при этом ее надо устанавливать не до упора в плату, чтобы можно было пропаять выводы со стороны микросхемы. Т.к. не было под лапой цанговой панельки, было решено впаять МК намертво в плату. Для начинающих не рекомендую, в случае неудачной прошивки 28-ногий МК очень неудобно заменять.
Затем все прочие элементы.

Эксплуатация данного модуля вольтамперметра не требует объяснения. Достаточно правильно подключить питание и измерительные цепи. Разомкнутый джемпер или кнопка – измерение напряжения, замкнутый джемпер или кнопка – измерение тока. Прошивку можно залить в контроллер любым доступным для вас способом. Из Fuse-битов, что необходимо сделать, так это включить встроенный генератор 4 МГц. Ничего страшного не случится, если их не прошить, просто МК будет работать на 1МГц и цифры на индикаторе будут сильно мерцать.

А вот и фотография вольтамперметра:


Я не могу дать конкретных рекомендаций, кроме вышесказанных, о том, как подключить устройство к конкретной схеме блока питания - ведь их такое множество! Надеюсь, эта задача действительно окажется такой легкой, как это я себе представляю. P.S. В реальном БП данная схема не проверялась, собрана как макетный образец, в будущем планируется сделать простой регулируемый БП с применением данного вольтамперметра. Буду благодарен тем, кто испытает в работе данный вольтамперметр и укажет на существенные и не очень недостатки. За основу взята схема от ARV Моддинг блока питания с сайта радиокот. Прошивку для микроконтроллера ATmega8 c исходными кодами для CodeVision AVR C Compiler 2.04, и плату в формате ARES Proteus можно скачать на отсюда . Также прилагается рабочий проект в ISIS Proteus. Материал предоставил – i8086.
Все основные и дополнительные детали блока питания монтируются внутри корпуса БП ATX. Места там хватает и для них, и для цифрового вольтамперметра, и для всех необходимых гнёзд и регуляторов.


Последнее преимущество так-же очень актуально, ведь корпуса часто являются большой проблемой. Лично у меня в ящике стола лежит немало девайсов, которые так и не обзавелись собственной коробкой.


Корпус получившегося блока питания можно обклеить декоративной чёрной самоклеющейся плёнкой или просто покрасить. Переднюю панель со всеми надписями и обозначениями делаем в фотошопе, печатаем на фотобумаге и наклеиваем на корпус.




Долгие испытания лабораторного блока питания показали его высокую надёжность, стабильность и отличные технические характеристики. Рекомендую всем повторить эту конструкцию, тем более, что пределка довольно простота и в итоге получится красивый компактный БП.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ КОМПЬЮТЕРНОГО ATX

С каждым годом, становится всё труднее достать хороший трансформатор для блока питания. Чтоб и напряжения были какие требуются, и ток. Вот недавно нужно было собрать адаптер для одного девайса, так оказывается цены на обычные трансформаторы, в радиомагазинах, находятся в пределах 5-15 уе! Поэтому, когда потребовалось сделать хороший лабораторный блок питания, с регулировками напряжения и тока защиты, выбор пал на компьютерный в качестве основы конструкции. Тем более, что его цена сейчас не намного больше цены обычного трансформатора.

Для наших целей подойдёт абсолютно любой компьютерный БП. Хоть на 250 ватт, хоть на 500. Того тока, что он обеспечит, хватит для радиолюбительского БП с головой.

Переделка минимальна, и доступна для повторения даже начинающим радиолюбителям. Главное только помнить, что импульсный компьютерный БП ATX имеет на плате много элементов, которые находятся под напряжением сети 220 В, поэтому будьте предельно аккуратны при испытаниях и настройке! Изменений коснулась в основном выходная часть БП ATX.

Для удобства эксплуатации, этот лабораторный блок питания можно снабдить тока и напряжения. Выполнить это можно или на микроконтроллере, или на специализированной микросхеме.

Все основные и дополнительные детали блока питания монтируются внутри корпуса БП ATX. Места там хватает и для них, и для цифрового вольтамперметра, и для всех необходимых гнёзд и регуляторов.

Последнее преимущество так-же очень актуально, ведь корпуса часто являются большой проблемой. Лично у меня в ящике стола лежит немало девайсов, которые так и не обзавелись собственной коробкой.

Корпус получившегося блока питания можно обклеить декоративной чёрной самоклеющейся плёнкой или просто покрасить. Переднюю панель со всеми надписями и обозначениями делаем в фотошопе, печатаем на фотобумаге и наклеиваем на корпус.


В этой статье расскажу как из старого компьютерного блока питания сделать очень полезный для любого радиолюбителя лабораторный блок питания.
Компьютерный блок питания можно очень дешево купить на местной барахолке или выпросить у друга или знакомого, сделавшего апгрейд своего ПК. Прежде прежде чем начать работу над БП, следует помнить, что высокое напряжения опасно для жизни и нужно соблюдать правила техники безопасности и проявлять повышенную осторожность.
Сделанный нами источник питания будет иметь два выхода с фиксированным напряжением 5В и 12В и один выход с регулируемым напряжением 1,24 до 10,27В. Выходной ток зависит от мощности используемого компьютерного блока питания и в моем случае составляют около 20А для выхода 5В, 9А для выхода 12В и около 1.5А для регулируемого выхода.

Нам понадобятся:


1. Блок питания от старого Пк (любой ATX)
2. Модуль ЖК вольтметра
3. Радиатор для микросхемы(любой, подходящий по размеру)
4. Микросхема LM317 (регулятор напряжения)
5. электролитический конденсатор 1мкФ
6. Конденсатор 0.1 мкФ
7. Светодиоды 5мм - 2шт.
8. Вентилятор
9. Выключатель
10. Клеммы - 4шт.
11. Резисторы 220 Ом 0.5Вт - 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм.

Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой.

Общие характеристики блока питания ATX:

Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:
а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.

Основными достоинствами таких источников являются:
- Высокая мощность при небольших размерах
- Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.

К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.

Мощность блока питания

Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию:


Напряжение - Ток

3.3В - 15A

5В - 26A

12В - 9А

5 В - 0,5 А

5 Vsb - 1 A


Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо.

Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK.

Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме.
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.

ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Модернизация блока питания

1. Разборка и чистка


Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода


Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник - лишние провода отпаиваем, если нет - откусываем кусачками и изолируем термоусадкой.

3. Изготовление передней панели.


Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.

4. Размещение стоек


Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.

5. Регулировка и стабилизация напряжения

Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:


Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:


Либо упрощенная форма этого выражения:

Vout = 1.25(1+R2/R1)


Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.

Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.

Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома

Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм

На этом расчет регулятора закончен.

6. Сборка регулятора

Сборку регулятора выполним по следующей схеме:



Ниже приведу принципиальную схему:


Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.

Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.

Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:

Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.

В статье вы узнаете о том, как изготовить лабораторный блок питания самостоятельно из того, что имеется под рукой. На сегодняшний день существует довольно много устройств, которым необходимо различное питание - и 5, и 3, и 12 вольт. А некоторые и вовсе питаются током высокой частоты (об этих устройствах будет рассказано отдельно). Но начать стоит с классической схемы - на трансформаторе. Конечно, конструкция получится громоздкой, и схема устаревшая, но надежность высокая.

Трансформатор блока питания

Для лабораторного блока питания необходимо использовать трансформаторы типа ТС-270 (двухкатушечные, от старых ламповых цветных телевизоров). Но их придется слегка модернизировать. Первичные обмотки остаются на своих местах, вторичные удаляются полностью. Так делается лабораторный блок питания, схема которого приведена в статье. Наматываются новые обмотки, исходя из существующих потребностей. Самый простой вариант - сделать ступенчатое регулирование напряжения на выходе. Для этого нужно посчитать, сколько витков необходимо для снятия одного Вольта:

  1. Наматываете 10 витков провода вместо вторичной обмотки.
  2. Включаете трансформатор и проводите замер напряжения на вторичной обмотке.
  3. Допустим, получилось 2 В. Следовательно, 5 витков выдают 1 В.
  4. Чтобы сделать «ступени» в 1 В, нужно делать отводы каждые пять витков.

Такая конструкция окажется массивной, да и придется использовать либо несколько гнезд, либо специальный тумблер для переключения режимов работы. Намного проще окажется произвести намотку вторичной обмотки с таким расчетом, чтобы на выходе оказалось примерно 30 вольт переменного напряжения.

Регулировка напряжения

Выше был приведен пример ступенчатой регулировки. Но лабораторный блок питания, схема которого приведена в статье, имеет одно большое преимущество - в нем вторичная обмотка цельная, без отводов. Регулировка производится при помощи специальной схемы на полупроводниковых элементах. При помощи переменного резистора изменяются параметры перехода полупроводника. Вследствие этого происходит изменение параметров схемы и выходного напряжения.

Дело в том, что у вас получается регулируемый лабораторный блок питания. И чтобы производить контроль напряжения на выходе, вам потребуется подключить к нему вольтметр. Проще всего использовать стрелочный, главное, чтобы шкала была правильно проградуирована. Но можно немного потратиться и приобрести цифровой вольтметр (цена его составляет около ста рублей), у которого диапазон измерений находится в промежутке 0...30 вольт. С ним будет намного проще работать, ведь вы всегда будете видеть значение напряжения на выходе вашего блока питания.

Блок питания компьютера

Если уж сказать прямо, то это идеальное устройство. Из него можно сделать любой источник постоянного напряжения. Правда, не все знают, как запустить его без материнской платы. Сделать это очень просто - в жгуте проводов ищете один зеленый и соединяете его с любым черным. Вот и все, можно видеть, как закрутились вентиляторы. Теперь подробнее о том, как сделать лабораторный блок питания из компьютерного БП своими руками.

Напряжения в компьютерном БП

Дело в том, что можно в компьютерном блоке питания найти несколько типов напряжений:

  1. 3,3 В.
  2. 12 В.

Как вы понимаете, это наиболее «популярные» значения напряжений. Их достаточно для питания микросхем, контроллеров, исполнительных устройств. Обратите внимание на то, что даже сложный электронный механизм можно запитать от одного только блока питания компьютера. Лишь бы был приличный запас мощности.

Высокочастотные токи

Что самое главное - можно изготовить лабораторный блок питания из компьютерного БП с наличием высокочастотного тока на выходе. Для некоторых устройств, например инверторов подсветки ламп монитора, необходим именно ток ВЧ. Как вы знаете, компьютерный БП построен по инверторной схеме. Следовательно, где-то в нем можно найти напряжение 12 вольт с высокой частотой. Для этого необходимо сделать следующее:

  1. Разбираете корпус блока питания (предварительно отключите его от сети).
  2. Находите самый большой трансформатор. Это высокочастотный трансформатор, именно на нем и будет находиться ток высокой частоты.
  3. Два провода припаиваете к первичной обмотке и выводите из корпуса.

Теперь остается только все красиво оформить - сделать переднюю панель, установить нужное количество гнезд и подписать их, чтобы не запутаться. При изготовлении лабораторного источника питания из компьютерного БП вы получаете одно большое преимущество - напряжение на выходе всегда стабильно. Дополнительных схем стабилизации не требуется. И рассмотренный в самом начале лабораторный блок питания 0-30В оказывается намного хуже по параметрам, нежели из компьютерного БП.

Заключение

Можно спорить о преимуществах и недостатках различных схем, но наиболее качественным изделием окажется источник питания из компьютерного БП. Но у него есть недостаток - короткое замыкание на выходе приводит к переходу блока питания в режим защиты. По факту это полная остановка работы. Только лишь перезагрузка устройства вернет на выходе напряжение. А вот если лабораторный блок питания изготовлен по классической трансформаторной схеме, таких проблем вы сможете избежать - но продумать придется защиту от короткого замыкания (хотя бы предохранитель на 16 или 25 ампер на выходе устройства).

Анализ информации по переделке компьютерных импульсных блоков питания (далее ИБП), размещенной в Интернете, натолкнул на мысли переделать ИБП для радиолюбительских целей. Ввиду большого разнообразия вариантов исполнения блоков питания пришлось разрабатывать свою методику переделки.

Однажды попались мне два внешне совершенно одинаковых ИБП, но на плате у одного из них изготовителем не были уставлены с два десятка деталей! Вообще, было переделано больше десятка ИБП. Переделке поддались ИБП с ШИМ-контроллером TL494 (или его соответствующие аналоги).

Условно ИБП можно разделить на две категории:
— ИБП раннего выпуска (без выводов VSB и PS-ON), которые не запускаются без нагрузки по шине +5 В (часто встречал случаи нагрузки этой шины резистором 5 Ом/10 Вт, а это дополнительный источник тепла в корпусе ИБП), стабилизация напряжения -только по шине +5 В, запускаются сразу после подачи сетевого напряжения;
— ИБП позднего выпуска, имеют выводы VSB, PS-ON, PG, +3,3 В, высокий уровень стабилизации по шине +12 В и запускаются только после замыкания вывода PS-ON на корпус (GND).

Итак, после вскрытия ИБП первым делом необходимо очистить его от пыли. Затем снять вентилятор охлаждения и смазать его машинным маслом, для этого отклеивают фирменную наклейку и выковыривают резиновую пробку.

Разъемы для подключения сетевого шнура и монитора, а также переключатель 115/230 В также снимаем - на этом месте будут размещены амперметр и резистор регулировки выходного напряжения. Сетевой шнур следует припаять непосредственно к плате. Электролитические конденсаторы на шине +12 В заменяем на 25-вольтовые.

Подпаиваем перменный резистор

На печатной плате к выводу 1 ШИМ-контроллера TL494 (рис.1 а или б - в зависимости от варианта исполнения ИБП) и общему проводу подпаиваем переменный резистор Rрег. сопротивлением 47 кОм. Уменьшая сопротивление резистора Rper, пытаемся поднять напряжение шины +12 В, но при напряжении 12,5 - 13В должна срабатывать защита ИБП, и он должен выключаться. За это отвечает узел защиты от превышения выходного напряжения, начинающийся обычно со стабилитрона (рис.2а или б - в зависимости от варианта исполнения ИБП).

Его необходимо отыскать на плате и выпаять на время экспериментов. Если стабилитрон стоит в другом месте схемы, то найти его можно, измеряя падение напряжения на нем (около 4 -5 или 10-12 В).

Далее запускаем ИБП и, уменьшая сопротивление резистора Rper. поднимаем напряжение на шине +12 В до максимума (+16 - 20 В, в зависимости от конкретного экземпляра ИБП). На плате выпаиваем все резисторы, подключенные к выводу 1 ШИМ-контроллера, и собираем цепь регулировки выходного напряжения (рис.3).

Резистором R2 подбираем верхний предел регулировки (обычно +16 В).

Вернемся к защите от превышения выходного напряжения.

Есть два варианта:
— подобрать цепочку из маломощных диодов включенных последовательно с стабилитроном (рис 4а);
— собрать схемку на тиристоре (рис.4б), главное условие защиты - срабатывание при напряжении, на 1 - 1,5 В превышающем напряжения верхнего предела регулировки.
Далее, для уменьшения акустического шума, последовательно с плюсовым проводом вентилятора включаем резистор сопротивлением 10 -15 Ом мощностью 1 Вт (рис.5).

Монтируем выходные клеммы.

Для улучшения работы ИБП включаем цепочку из резистора и двух конденсаторов, согласно рисунку. В разрыв плюсового (оранжевого) провода подключаем амперметр.

Мною был изготовлен УКВ усилитель мощности на транзисторе КТ931, и для его питания необходимо было напряжение 20 - 27 В. Предлагаю вариант соединения двух ИБП в один (рис.6).

Все здесь просто, на мелочах останавливаться не буду, единственное - в ИБП 1 необходимо не забыть в местах крепления платы 1 к корпусу разрезать дорожки к GND и установить диоды VD1 - VD4. Амперметр на рисунке не показан.



Понравилась статья? Поделиться с друзьями: