Коды передачи данных. Передача информации по каналам связи. Основные характеристики каналов связи Способы передачи данных по каналам связи

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи (line) являет­ся термин канал связи (channel).

Физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следую­щие:

§ проводные (воздушные);

§ кабельные (медные и волоконно-оптические);

§ радиоканалы наземной и спутниковой связи.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза­щищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой. Витая пара существует в экранированном варианте, когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю.

Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п.

Волоконно-оптический кабель состоит из тонких волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и лучше других типов передающей среды обеспечивает защиту данных от внешних помех.


Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция, а также диапазонах сверхвысо­ких частот (СВЧ или microwaves).

В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей.

Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети.

Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи , без решения которой невозможен любой вид связи.

В вычислительной технике для представления данных используется двоичный код . Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.

Аналогичные подходы могут быть использованы для кодирования данных и при передаче их между двумя компьютерами по линиям связи. Однако эти линии связи отличаются по своим электрическим характеристикам от тех, которые существуют внутри компьютера. Главное отличие внешних линий связи от внутренних состоит в их гораздо большей протяженности , а также в том, что они проходят вне экранированного корпуса по пространствам, зачастую подверженным воздействию сильных электромагнитных помех. Все это приводит к значительно большим искажениям прямоугольных импульсов (например, «заваливанию» фронтов), чем внутри компьютера. Поэтому для надежного распознавания импульсов на приемном конце линии связи при передаче данных внутри и вне компьютера не всегда можно использовать одни и те же скорости и способы кодирования. Например, медленное нарастание фронта импульса из-за высокой емкостной нагрузки линии требует передачи импульсов с меньшей скоростью (чтобы передний и задний фронты соседних импульсов не перекрывались и импульс успел дорасти до требуемого уровня).

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных , а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 3). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.

Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.

Для преобразования данных из одного вида в другой используются модемы. Термин «модем» - сокращение от слов модулятор/демодулятор. Двоичный ноль преобразуется, например, им в сигнал низкой, а единица - высокой частоты. Другими словами, преобразуя данные, модем модулирует частоту аналогового сигнала (рис. 4).

На способ передачи сигналом влияет и количество проводов в линиях связи между компьютерами.

Передача данных может происходить происходит параллельно (рис. 5) или последовательно (рис. 6).

Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.

При соединении компьютеров и устройств используются также три различных метода, обозначаемые тремя различными терминами. Соединение бывает: симплексное, полудуп­лексное и дуплексное (рис. 7).

О симплексном соединении говорят, когда данные перемещаются лишь в одном направлении. Полудуплексное соединение позво­ляет данным перемещаться в обоих направлениях, но в разное время, и, наконец, дуплексное соединение, это когда данные следуют в обоих направлениях одновременно.

Рис. 7. Примеры потоков данных.

Другим важным понятием является переключение (коммутация) соединения.

Любые сети связи поддерживают некоторый способ коммутации своих абонентов между собой. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающиеся с помощью телефон­ных аппаратов. Практически невозможно предоставить каждой паре взаимодействующих абонентов свою собственную некоммутируемую (т.е. постоянное соединение) физическую линию связи, которой они могли бы монопольно «владеть» в течение длительного времени. По­этому в любой сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.

Переключение соединения позволяет аппаратным средствам сети разделять один и тот же физический канал связи между многими устройствами. Два основных способа переключения соединения - пере­ключение цепей и переключение пакетов.

Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, ни одно другое не сможет воспользоваться этим соединением для передачи собственной инфор­мации - оно вынуждено ждать, пока соединение не освободится.

Простой пример переключателя цепей - переключатель типа А-В, служащий, чтобы два компьютера соединить с одним принтером. Чтобы один из компьюте­ров мог печатать, вы поворачиваете тумблер на переключателе, устанавливая непрерывное соединение между компьютером и принтером. Образуется соеди­нение типа «точка-точка». Как изображено на рисунке, только один компьютер может печатать в одно и то же время.

Рис. 6Переключение цепей

Большинство современных сетей, включая Интернет, используют переключение пакетов. Программы передачи данных в таких сетях делят данные на кусочки, называе­мые пакетами. В сети пакетной коммутации данные могут следовать одновременно одним пакетом, а могут - в нескольких. Данные прибудут в одно и тоже место назначения, несмотря на то, что пути, которыми они следовали, могут быть совершенно различны.

Для сравнения двух видов соединения в сети, предположим, что мы прервали канал в каждом их них. Например, отключив принтер от менеджера на рис. 6 (переставив тумблер в положение В), вы лишили его возможности печатать. Соединение с переключением цепей требует наличия непрерывного канала связи.

Рис. 7. Переключение пакетов

Наоборот, данные в сети с переключением пакетов могут двигаться различными путями. Это видно на рис. 7. Данные необязательно следуют одной дорогой на пути между офисным и домашним компьютерами, разрыв одного из каналов не приведет к потере соединения - данные просто пойдут другим маршрутом. Сети с переключением пакетов имеют множество альтернативных маршрутов для пакетов.

Коммутация пакетов - это техника коммутации абонентов, которая была специ­ально разработана для эффективной передачи компьютерного трафика.

Суть проблемы заключается в пульсирующем ха­рактере трафика , который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просмат­ривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вооб­ще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отно­шению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сети сообщения раз­биваются в исходном узле на сравнительно небольшие части, называемые пакета­ми. Сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п.

Сообщения могут иметь произвольную длину, от нескольких байт до многих мега­байт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Пакеты транспортируются в сети как независи­мые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это дается в сетях с коммутацией каналов. При этом способе время взаимодействия пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов. Тем не менее, общий объем передаваемых сетью компьютерных данных в едини­цу времени при технике коммутации пакетов будет выше, чем при технике ком­мутации каналов.

Обычно при равенстве предоставляемой скоро­сти доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Каждая из этих схем (коммутация каналов (circuit switching) или коммутация пакетов (packet switching)) имеет свои преимущества и недостатки, но по долгосроч­ным прогнозам многих специалистов будущее принадлежит технологии коммута­ции пакетов, как более гибкой и универсальной.

Сети с коммутацией каналов хорошо приспособлены для коммутации данных с постоянной скоростью, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

Как сети с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку - на сети с динамической коммутацией и сети с постоянной коммутацией.

В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае любой пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы - передачи файла, просмотра страницы текста или изображения и т. п.

Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период[ времени. Соединение устанавливается не пользователями, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, меряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных (dedicated) или арендуемых (leased) каналов.

Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сеть Internet.

Некоторые типы сетей поддерживают оба режима работы.

Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого . При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.

Асинхронная и синхронная передачи. При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком.

Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

Такой режим работы называется асинхронным или старт-стопным. Другой причиной использования такого режима работы является наличие устройств, ко­торые генерируют байты данных в случайные моменты времени. Так работает кла­виатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

В асинхронном режиме каждый байт данных сопровождается специальными сиг­налами «старт» и «стоп». Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта..

Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта

Задачи надежного обмена двоичными сигналами, представленными соответствующими электромагнитными сигналами, в вычислительных сетях решает определенный класс оборудования. В локальных сетях это сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных, к которой относятся, например, рассмотренные модемы. Это оборудование кодирует и декодирует каждый информационный бит, синхронизирует передачу электромагнитных сигналов по линиям связи, проверяет правильность передачи по контрольной сумме и может выполнять некоторые другие операции.

Контрольные вопросы:

3. Какие линии связи используются в компьютерных сетях?

4. Какие линии связи являются наиболее перспективными?

5. Как передаются двоичные сигналы в сети? Что такое модуляция?

6. Для чего используется модем?

7. Что такое последовательная и параллельная передача данных?

8. Что такое симплексное, полудуп­лексное и дуплексное соединение?

9. Что такое коммутация соединения?

10. Какие существуют два основных способа коммутации соединения?

11. Что такое пакетная коммутация и в чем ее преимущество?

12. Когда целесообразно использовать коммутацию каналов?

13. Поясните понятия асинхронной и синхронной передачи данных?

Формулировка задания: Для передачи данных по каналу связи используется 5-битовый код. Сообщение содержит только буквы А, Б и В, которые кодируются кодовыми словами. При передаче возможны помехи. Однако некоторые ошибки можно попытаться исправить. Любые два из этих трёх кодовых слов отличаются друг от друга не менее чем в трёх позициях. Поэтому если при передаче слова произошла ошибка не более чем в одной позиции, то можно сделать обоснованное предположение о том, какая буква передавалась. Если принятое кодовое слово отличается от кодовых слов для букв А, Б, В более чем в одной позиции, то считается, что произошла ошибка (она обозначается "х"). Получено сообщение. Декодируйте это сообщение - выберите правильный вариант.

Задание входит в ЕГЭ по информатике для 11 класса под номером 5 (Кодирование и декодирование информации).

Рассмотрим, как решаются подобные задания на примере.

Пример задания:

Для передачи данных по каналу связи используется 5-битовый код. Сообщение содержит только буквы А, Б и В, которые кодируются следующими кодовыми словами: А - 00000, Б - 10011, В - 11100.

При передаче возможны помехи. Однако некоторые ошибки можно попытаться исправить. Любые два из этих трёх кодовых слов отличаются друг от друга не менее чем в трёх позициях. Поэтому если при передаче слова произошла ошибка не более чем в одной позиции, то можно сделать обоснованное предположение о том, какая буква передавалась. (Говорят, что «код исправляет одну ошибку».) Например, если получено кодовое слово 10010, считается, что передавалась буква Б. (Отличие от кодового слова для Б только в одной позиции, для остальных кодовых слов отличий больше.) Если принятое кодовое слово отличается от кодовых слов для букв А, Б, В более чем в одной позиции, то считается, что произошла ошибка (она обозначается "х").

Получено сообщение 11000 00001 11110 10001. Декодируйте это сообщение - выберите правильный вариант.

Попробуем декодировать каждое кодовое слово сообщения:

11000 – данная последовательность не совпадает ни с одной из букв А, Б и В. Однако если заменить третью цифру на 1, получится буква В. Значит в данном слове ошибка только в 1 позиции и она может быть исправлена.

00001 – данная последовательность не совпадает ни с одной из букв А, Б и В. Однако если заменить последнюю цифру на 0, получится буква A. Значит в данном слове ошибка только в 1 позиции и она может быть исправлена.

11110 – данная последовательность не совпадает ни с одной из букв А, Б и В. Однако если заменить четвертую цифру на 0, получится буква В. Значит в данном слове ошибка только в 1 позиции и она может быть исправлена.

10001 – данная последовательность не совпадает ни с одной из букв А, Б и В. Однако если заменить четвертую цифру на 1, получится буква Б. Значит в данном слове ошибка только в 1 позиции и она может быть исправлена.

Таким образом, получилось слово ВАВБ, это ответ 2.

Принцип передачи данных но цифровым каналам связи рассмотрим на примере системы ИКМ-30

Передающей средой в ИКМ-системах служит цифровой линейный тракт (ЛТ)), структура которого приведена на рис.3.49. Он включает передающее и приемное оконечное оборудование ЛТ участки линии связи к регенераторы, для согласования структуры цифрового сигнала с ЛТ в передающую и приемную части оконечного оборудования входят соответственно кодер (КЛТ)) и декодер (ДЛТ) линейного тракта. При использовании кабельных линий связи цифровые сигналы передаются в основной полосе частот с использованием линейного кодирования. Местоположение регенератора и обработка цифрового сигнала в нем выбираются так, чтобы обеспечить требуемую помехоустойчивость при минимизации затрат на создание цифрового тракта . Передача данных может осуществляться для самых разных целей. Будь то - потоковое видео , перекачка баз данных, видеонаблюдение через интернет, телефонные переговоры , как в режиме с коммутацией каналов, так и с использованием интернет-технологий. Для всех этих применений канал остается примерно одинаковым. Разве что для видеосигнала он будет намного шире, чем для передачи текста.

Кабельные линии связи

В случае, если два устройства хотят разделить большой объем информации, для них было бы несправедливо делать это исключительно с сетевым диапазоном, предотвращая передачу более срочной информации. Когда информация разбивается на более мелкие частицы, каждая из них отправляется индивидуально, что позволяет пересекать пакеты на одном физическом и логическом носителе, позволяя использовать сетевой носитель для нескольких транзакций. Существует также вторая очень серьезная причина использования пакетов в средствах сетевой передачи , обнаружения и обработки ошибок.

Задачей передающей части оконечного оборудования является дискретизация аналоговых речевых сигналов , временное объединение полученных дискретов их квантование; и кодирование. На выходе квантователя сигнал имеет такую же структуру, как и сигнал данных. Поэтому возможно объединение телефонных сообщений и данных. На приемном конце осуществляются обратные преобразования (разъединение сигналов, восстановление дискретов по линейному коду, и их цифроаналоговое преобразование).

Фактически, большая часть сложности сетевого взаимодействия связана с использованием сценариев моделирования повреждений. Несколько методов обнаружения ошибок основаны на контрольных суммах : когда отправитель передает информацию, активная суммация, включая все отправленные данные, сохраняется и затем отправляется в конце передачи. Приемник вычисляет общее количество полученных данных и сравнивает их с переданной суммой. Если существует разница между полученными байтами и количеством полученных байтов, тогда возникла проблема с данными или общим повреждением.

Временное уплотнение сигналов в ИКМ-системах требует жесткой синхронизации передающего и приемного оборудования. Для этого предусматривается синхронизация генераторов приемной станции по тактовой частоте, циклам и сверхциклам цифрового патока. Тактовая синхронизация обеспечивает равенство скорости обработки сигналов на оконечных станциях. Цикл передачи груп­пового цифрового сигнала состоит из канальных интервалов (КИ), синхросигналов (СС), сигналов управления и взаимодействия (СУВ) вспомогательных сигналов и сигналов данных. Структура группового сигнала ИКМ, показанная на рис.3.50, включает 32 КИ, а ее тактовая частота J- определяется частотой дискретизации речевых сигналов fg = 8 кГц, числом разрядов кодовой комбинации для представления дискретов п = log2256=8 и числом каналов Nk = 32. Для ИКМ-30 f t= 8-8-32 = 2048 кГц.

Для эффективной связи в компьютерной сети необходима надлежащая инфраструктура, чтобы обеспечить возможность обмена сообщениями между узлами прозрачным и упорядоченным образом. Поэтому требования, такие как сетевые интерфейсы , межсоединения и системы связи, необходимы для того, чтобы сетевой комплекс мог эффективно выполнять свою роль, чтобы обеспечить обмен информацией и обмен информацией между ее соответствующими узлами в безопасном, прозрачном и бесперебойно.

Следуя этой линии рассуждений, мы можем сказать, что другое требование становится незаменимым при разработке компьютерных сетей - протокола связи. Представим себе, что все узлы определенной сети , переданные с разными правилами, были бы такими, как если бы мы встретили в одной комнате русского, арабского, американского и бразильского, без какого-либо из них, говорящего на другом языке, кроме своего родного языка, и без наличие переводчика. Разумеется, в понимании, в речи и, следовательно, в общении этих людей было бы много трудностей.

Цифровая синхронизация обеспечивает правильное распреде­ление кодовых символов в КИ, согласованное с передающей сторо­ной. Синхросигнал располагается в начале цикла и его структура такова, что он легко обнаруживается на приемной стороне (рис.3.50а). В ИКМ-30 кодовая синхрогруппа имеет вид 0011011 исследует с частотой 4 кГц (в КИ нечетных циклов).

Что такое электромагнитные волны

Это то, что произойдет, если в компьютерных сетях не будет протоколов связи, общение, безусловно, будет редкими или, возможно, невозможными. Протокол выполняет роль переводчика в коммуникационном комплексе. Эта информация в основном полезна для инженеров и техников, заинтересованных в реализации семейных протоколов. Электромагнитные волны характеризуются их частотой, амплитудой и фазой.

Какие типы физических носителей

Кабельные кронштейны, которые позволяют электрическому количеству циркулировать в кабеле, обычно металлическом. Антенные опоры, которые являются воздушным или пустым пространством. Они позволяют циркуляцию электромагнитных волн и различных типов радиоволн.

Синхронизация системы распределения сигналов управления и взаимодействия между узлами коммутации обеспечивается формиро­ванием сверхцикловой синхронизации (СЦС), кодовые группы кото­рой имеют структуру 0000 и передастся через каждые 16 циклов в 17-м КИ, то есть с интервалом следования 126 мксх16=2 мс (рис.З.50б). Для обеспечения работы системы передачи в структу­ру цикла и сверхцикла включаются служебные символы, помеченные X,U , V , а на рис.З.50а. Буквы а,в,с,d означают символы че­тырех сигнальных каналов , приписываемых соответствующему каналу.

Каковы помехи при передаче данных

Оптические носители, которые позволяют передавать информацию в виде света. В зависимости от типа физических носителей физическая величина имеет более или менее распространения. Интерференция относится к любому помехе, которое локально изменяет форму сигнала. Существует два типа шума: белый шум , который является равномерным нарушением сигнала, т.е. он добавляет небольшую амплитуду эффекта среднего сигнала, приводя к нулевому сигналу. Это должно быть как можно выше; импульсные шумы, которые представляют собой небольшие всплески интенсивности, которые вызывают ошибки передачи.

Следовательно система ИКМ-30, как и любая другая цифровая система, позволяет совмещенный режим использования для передачи аналоговой и дискретной информации (речевых сообщений и сообще­ний данных). Имеется возможность часть (или все) КИ занимать сигналами данных.

Появление цифровых каналов в системах связи дало возмож­ность исключить в АПД необходимость реализации дорогостоящего процесса модуляции и демодуляции двоичных сигналов. Оконечная аппаратура цифровых систем каналообразования позволяет вводить цифровые сигналы в систему передачи без преобразования. Это существенное преимущество цифровых систем позволило осуществлять интеграцию на основе различных видов связи. Однако следует помнить, что аппаратура цифровых систем (прежде всего, систем с ИКМ с дельта-модуляцией ДМ и их разновидностями создавалась для передачи речевых (аналоговых) сигналов, что определило технические решения этой аппаратуры, в частности выбор частоты дискретизации и числа элементов кодовых комбинаций. При передаче данных существен не столько уровень передаваемого сигнала , сколько верность определения его значащих моментов (переход из состояния "1" в состояние "0" или наоборот). Параметры цифровой системы , в которой организуются каналы передачи данных, определяет их качественные характеристики . Кодовые комбинации полученные в результате преобразования сигналов передачи данных, отличаются от кодовых комбинаций аналоговых телефонных сигналов как числом символов в кодовых комбинациях, так и часто­той дискретизации. Обычно требуется, чтобы длительность самого короткого импульса (сигнала) передачи данных была больше0 периода стробирования (дискретизации) входного сигнала . Принцип передачи цифровых сигналов, включая сигналы данных, путем передает информации о моменте изменения значащего состояния цифрового сигнала и направлений его изменения позволяет организовать "прозрачные" системы передачи данных,т.е. системы неналагающие требований на применяемый для сигналов данных код, на скорость их модуляции и способ синхронизации

Аналоговые и цифровые сигналы

Ослабление сигнала представляет собой потерю сигнала через диссипацию энергии в линии. Ослабление создает выходной сигнал слабее входного сигнала и характеризуется формулой. Искажение сигнала характеризует разность фаз между входным сигналом и выходным сигналом.

Как измеряется пропускная способность широкополосного доступа

Емкость канала - это объем информации, который может быть передан через него в течение 1 секунды.

В чем разница между отправкой и загрузкой

Для передачи между двумя машинами связь может выполняться по-разному. Он характеризуется чувством обмена, обменами; по режиму передачи, относительно количества битов, отправленных одновременно; и синхронизацией между отправителем и получателем.

Ввод и передача сигналов данных через оконечные устройства цифровых систем каналообразования могут быть осу­ществлены двояко: путем непосредственного стробирования сигналов данных и передачи информации о значащих позициях этих сиг­налов (простое наложение) либо путей опознавания моментов изменений значащих позиций и передачи кодированной информация о них

Как данные циркулируют с помощью симплексных, полудуплексных и полнодуплексных соединений

Он характеризует соединение, в котором данные циркулируют только в одном направлении, то есть от отправителя до получателя. Этот тип соединения полезен, когда данные не нужно скручивать. Таким образом, с этим типом подключения каждый конец выходит только по очереди.

Этот тип соединения позволяет использовать двунаправленное соединение, используя общую пропускную способность линии. Это соединение, в котором данные циркулируют в двух направлениях и одновременно. Таким образом, каждый конец линии может одновременно отправлять и принимать сообщения, что означает, что широкополосный доступ разделен на два для каждого направления излучения данных, если для двух передач используется одна и та же среда передачи.

Метод простого наложения

При этом методе сигналы данных вводятся на канальные вхо­ды оконечных устройств цифровых систем и стробируются последовательностью стробирующих импульсов. Результирующий сигнал, состоящий из последовательностей стробирующих импульсов, соответствующих состоянию I двоичного сигнала, вводится в линейный тракт. В приемном оборудовании переданный сигнал восстаналивается по огибающей принятой импульсной последовательности . Форма импульсов передаваемого, стробирующего, линейного и принятого сигналов показана на рис.3.51. При таком методе переда­чи стробирущие импульсы не синхронизированы с сигналом данных. Это приводит к тому, что передача значащих моментов модуляции происходит с ошибкой, которая меньше периода повторения стробирущих импульсов Те. Степень краевых искажений равняется

Как производятся серийные и параллельные передачи

Как работает параллельное соединение

В этом случае каждый бит отправляется на физическую линию. Используется физическая линия , разделенная на несколько подканалов на широкополосное совместное использование . Таким образом, каждый бит передается на другой частоте.

Как создается последовательное соединение

Поскольку проводники находятся близко к крышке, могут возникать помехи, которые уменьшают качество сигнала. Этот контроллер связи работает следующим образом . Производится благодаря регистру смещения. Регистр смещения позволяет перемещать часы в положение слева, а затем выдавать сильный бит и так далее.

где То - длительность единичного элемента сигнала данных.

Для обеспечения высокой вероятности передачи (уменьшения краевых искажений) в системе с простым наложением необходимо повышать частоту следования стробирующих импульсов.

Выполняется таким же образом благодаря регистру смещения. Регистр смещения позволяет вам сдвинуть регистр из одной из позиций влево при каждом получении бит, а затем вывести весь регистр параллельно, когда он будет заполнен, и последовательно. В асинхронном соединении каждый символ генерируется нерегулярно во времени. Чтобы устранить эту проблему, каждому символу предшествует информация, указывающая начало передачи символа и заканчивающаяся отправкой информации о завершении передачи.

В синхронном соединении передатчик и приемник синхронизируются одними и теми же часами. Приемник непрерывно получает информацию со скоростью, с которой отправитель отправляет их. Вот почему передатчик и приемник должны быть синхронизированы с одинаковой скоростью. Кроме того, добавлена ​​дополнительная информация , чтобы избежать ошибок во время передачи. При синхронной передаче биты отправляются последовательно, без разделения между символами. Таким образом, вам нужно ввести элементы синхронизации.

Требуемую частоту стробирования можно определить для за­данной величины Те и ожидаемой величины краевых искажений. В случае передачи сигналов данных с низкой скоростью модуляции эта частота значительно меньше частоты дискретизации 8 кГц, используемой в системах передачи с ИКМ Поэтому для полного использования емкости цифрового канала в нем можно образовать несколько низкочастотных каналов передачи сигналов данных. Число таких каналов можно определить как

Радиорелейные каналы передачи данных

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковые каналы передачи данных

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции . В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах . Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке

Рис. 1.

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях , и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы передачи данных

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу , одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы передачи данных WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции . Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы передачи данных MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Радиоканалы передачи данных для локальных сетей . Стандартом беспроводной связи для локальных сетей является технология Wi-Fi . Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы передачи данных Bluetooht - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

Подпишитесь на новости

Каналом связи называется совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которая обеспечивает передачу сообщений от источника информации к получателю.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть. Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех . В таком канале каждому сообщению на входе однозначно соответствовало определенное сообщение на выходе и наоборот. Если влиянием помех в канале пренебречь нельзя, то при анализе особенностей передаваемых сообщений по такому каналу используются модели характеризующие работу канала при наличии помех.

Под моделью канала понимается математическое описание канала, позволяющие рассчитать или оценить его характеристики, на основании которых исследуются способы построения систем связи без проведения экспериментальных исследований.

Канал в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы называется симметричным .

Канал, алфавит сигналов на входе которого отличается от алфавита сигналов на его выходе называется каналом со стиранием.

Канал передачи сообщения от источника к получателю, дополненный обратным каналом, служит для повышения достоверности передачи называется каналом с обратной связью.

Канал связи считается заданным, если известны данные по сообщению на его входе, а также ограничения которые накладываются на входные сообщения физическими характеристиками каналов.

Для характеристики каналов связи используют два понятия скорости передач:

1 – техническая скорость передачи, которая характеризуется числом элементарных сигналов, передаваемых по каналу связи в единицу времени, она зависти от свойств линий связи и от быстродействия аппаратуры канала:

2 – информационная скорость, которая определяется средним количеством информации, передающимся по каналу связи в единицу времени:

Пропускной способностью канала называется максимальная скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи и приема.

Лекция №8

Согласование физических характеристик канала связи и сигнала

Каждый конкретный канал связи обладает физическими параметрами, определяющими возможности передачи по этому каналу тех или иных сигналов. Независимо от конкретного типа и назначения каждый канал может быть охарактеризован тремя основными параметрами:

    Т К – время доступа канала [с];

    F K – полоса пропускания каналов [Гц];

    Н К – допустимое превышение сигнала над помехами в канале.

На основании этих характеристик используется интегральная характеристика – объем канала.

Рассмотрим следующие случаи:

а)

Чтобы оценить возможность передачи данного сигнала по конкретному каналу нужно соотнести характеристики канала с соответствующими характеристиками сигнала:

    T C – длительность сигнала [с];

    F C – полоса частот (ширина спектра) сигнала [Гц];

    H C – уровень превышения сигнала над помехой.

Тогда можем ввести понятие объема сигнала :

а) - необходимое условие согласования канала и сигнала связи;

б) достаточное условие согласования канала и сигнала связи:

Если канал связи имеет полосу пропускания F K меньшую чем ширина спектра сигнала F C , то есть F K

Если широкополостнйо канал имеет ограниченное время доступа T K

1.Отличие ТКС от компьютерных сетей.

Следует различать компьютерные и терминальные сети. Компьютерные сети связывают компьютеры, каждый из которых может работать и автономно. Терминальные сети обычно связывают мощные компьютеры (мэйнфреймы) с терминалами (устройствами ввода - вывода информации). Примером терминальных устройств и сетей может служить сеть банкоматов или касс продажи билетов.
Основное отличие LAN от WAN состоит в качестве, использованных линий связи и в том, что в ЛВС существует только один путь передачи данных между компьютерами, а в WAN их множество (существует избыточность каналов связи). Так как линии связи в ЛВС более качественные, то скорость передачи информации в LAN гораздо выше, чем в WAN.

Но осуществляется постоянное проникновение технологий LAN в WAN и наоборот, что значительно повышает качество сетей и расширяет спектр предоставляемых услуг. Таким образом, различия между LAN и WAN постепенно сглаживаются.

Тенденция сближения (конвергенция) характерна не только для LAN и WAN, но и для телекоммуникационных сетей других типов, к которым относятся радиосети, телефонные и телевизионные сети. Телекоммуникационные сети состоят из следующих компонентов: сети доступа, магистрали, информационные центры.

Компьютерную сеть можно представить многослойной моделью, состоящей из слоев:

  • компьютеры;
  • коммуникационное оборудование;
  • операционные системы;
  • сетевые приложения.

    В компьютерных сетях используются различные типы и классы компьютеров. Компьютеры и их характеристики определяют возможности компьютерных сетей.

    К коммуникационному оборудованию относятся: модемы, сетевые карты, сетевые кабели и промежуточная аппаратура сетей. К промежуточной аппаратуре относятся: приемопередатчики или трансиверы (traceivers), повторители или репитеры (repeaters), концентраторы (hubs), мосты (bridges), коммутаторы, маршрутизаторы (routers), шлюзы (gateways).

2. СИНХРОННАЯ И АСИНХРОННАЯ ПЕРЕДАЧА ДАННЫХ

При обмене данными по каналам связи используются три метода передачи данных:

1) Симплексная (однонаправленная) - TV, радио;

2) Полудуплексная передача - (приём и передача данных осуществляются поочерёдно);

3) Дуплексная (двунаправленная) – каждая станция одновременно передаёт и принимает данные.

Для передачи данных в информационных системах наиболее часто применяется последовательная (полудуплексная) передача. Она разделяется на два метода:

а) Асинхронная передача;

б) Синхронная передача.

а) При асинхронной передаче каждый символ передаётся отдельной посылкой. Стартовые биты предупреждают о начале передачи. Затем передаётся символ. Для определения достоверности передачи используется бит чётности (бит чётности равен 1, если количество единиц в символе нечётно, и равен 0 в противном случае). Последний бит сигнализирует об окончании передачи.

Преимущества:

1) Несложная отработанная система;

2) Недорогое интерфейсное оборудование.

Недостатки:

1) Третья часть пропускной способности теряется на передачу служебных битов;

2) Невысокая скорость передачи данных по сравнению с синхронной;

3) При множественной ошибке с помощью бита чётности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени, и не требуется высокая скорость передачи данных.

б) При использовании синхронного метода данные передаются блоками. Для синхронизации работы приёмника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. Код обнаружения ошибки вычисляется по содержимому поля данных и позволяет однозначно определить достоверность принятой информации.

Преимущества:

1) Высокая эффективность передачи данных;

2) Высокая скорость передачи данных;

3) Надёжный встроенный механизм обнаружения ошибок.

Недостатки:

3. Способы передачи цифровой информации

Цифровые данные по проводнику передаются путем смены текущего напряжения: нет напряжения ≈ "0", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному каналу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количестве, но усложняет процесс управления обменом данными.

При цифровом или узкополосном способе передачи (рис. 6.10) данные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычислительные сети. Подавляющее число локальных вычислительных сетей использует узкополосную передачу.

Рис.6.10. Цифровой способ передачи Аналоговый способ передачи цифровых данных (рис. 6.11) обеспечивает широкополосную передачу за счет использования в одном канале сигналов различных несущих частот. При аналоговом способе передачи происходит управление параметрами сигнала несущей частоты для передачи по каналу связи цифровых данных. Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением: X = X max sin (w t+j 0) где X max - амплитуда колебаний; w -частота колебаний; t - время; j 0 - начальная фаза колебаний. Передать цифровые данные по аналоговому каналу можно, управляя одним из параметров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции): амплитудный, частотный, фазовый. Проще всего понять принцип амплитудной рис. 6.11.а). Частотная рис. 6.11.б). Наиболее сложной для понимания является фазовая рис 6.11.в). В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача , которая предусматривает работу для каждого абонента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие большого количества абонентов при высокой скорости передачи данных. Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука, что является необходимым требованием современных систем мультимедиа.

Узкополосная и широкополосная передачи сигналов

В современных компьютерных сетях для передачи кодированных сигналов по сетевому кабелю наибольшее применение находят две наиболее распространенные технологии: -узкополосная передача сигналов; -широкополосная передача сигналов. Узкополосные (baseband) системы передают данные в виде цифрового сигнала одной частоты (рис. 4.9). Рис. 4.9. Узкополосная передача. Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала или, другими словами, цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между max и min частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно их передавать и принимать. Широкополосные (broadband) системы передают данные в виде аналогового сигнала, который использует некоторый интервал частот (рис. 4.10). Сигналы представляют собой непрерывные (а не дискретные) электронные или оптические волны. При таком способе сигналы передаются по физической среде в одном направлении. Если обеспечить необходимую полосу пропускания, то по одному сетевому кабелю одновременно можно передавать несколько сигналов (например, кабельного телевидения, телефона и передача данных). Рис. 4.10. Широкополосная передача Каждой передающей системе выделяется часть полосы пропускания. Все устройства (в. т. ч. и компьютеры) настраиваются так, чтобы работать с выделенной им частью полосы пропускания. В широкополосной системе сигнал передается только в одном направлении. Для возможности приема и передачи каждым из устройств необходимо обеспечить два пути прохождения сигнала. Для этого можно: -использовать два кабеля; -разбить полосу пропускания кабеля на два канала, которые работают с разными частотами: один канал на передачу, другой - на прием. Типы модуляции. амплитудной модуляции: "0" - отсутствие сигнала, т.е. отсутствие колебаний несущей частоты; "1"- наличие сигнала, т.е. наличие колебаний несущей частоты. Есть колебания - единица, нет колебаний - нуль (рис. 6.11.а). Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной частоте. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты (рис. 6.11.б).

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1и от 1 к 0 меняется фаза колебаний, т.е. их направление (рис 6.11.в).

4.Состав и виды линии связи.

В зависимости от среды передачи данных линии связи разделяются на следующие (рис. 2.2.):

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой (twisted pair) . Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded Twistedpair, UTP) , когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (optical fiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.

Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER) . Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило,10 -4 - 10 -6 , в оптоволоконных линиях связи - 10 -9 . Значение достоверности передачи данных, например, в 10 -4 говорит о том, что в среднем из 10000 бит искажается значение одного бита.

Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.

5.Протокл. Стек протоколов. Интерфейс

Протокол – это набор правил, обеспечивающих передачу данных в сетях.

Протоколы характеризуются :

1 . Протоколы работают на разных уровнях моделей OSI.

2 . Функции протокола определяются уровнем, на котором он работает.

3 . Несколько протоколов могут работать совместно. В этом случае они образуют стек.

Стек протоколов – набор протоколов смежных уровней моделей OSI.

Модель OSI и уровни протоколов (функции):

7.Прикладной -инициация или приём запроса.

6.Представительский - добавление в пакет формирующей и шифрующей информации.

5.Сеансовый - добавление информации о трафике (с указанием времени времени отправки пакета).

4.Транспортный - добавление информации для обработки ошибок.

3.Сетевой - добавление адресной информации и информации о месте пакета в последовательности передаваемых пакетов.

2.Канальный - добавление информации для проверки ошибок и подготовка данных для передачи по физическому соединению.

1.Физический - передача пакета как потока битов.

Стандартные стеки протоколов различных фирм :

1.Набор протоколов ISO - ISO / OSI

2.Набор протоколов IBM - SNA

3. Набор протоколов Digital - DEC Net

4. Набор протоколов Novell - IPX / SPX

5. Набор протоколов Apple - Apple Talk

6. Набор протоколов Microsoft - TCP / IP

Частным случаем декомпозиции задачи является многоуровневое представление, при котором все множество модулей, решающих подзадачи, разбивается на иерархически упорядоченные группы - уровни. Для каждого уровня определяется набор функций-запросов, с которыми к модулям данного уровня могут обращаться модули выше лежащего уровня для решения своих задач. Такой формально определенный набор функций, выполняемых данным уровнем для выше лежащего уровня, а также форматы сообщений, которыми обмениваются два соседних уровня в ходе своего взаимодействия, называется интерфейсом .

Интерфейс определяет совокупный сервис, предоставляемый данным уровнем выше лежащему уровню.



Понравилась статья? Поделиться с друзьями: