CxemCAR на Arduino - Bluetooth управление машинкой с Android. Простая Bluetooth машинка на Arduino

Сейчас снова хочу предоставить вам интересный вариант «Управляем Arduino-машинкой при помощи G-сенсора на Android смартфоне»

В данной статье я вам расскажу, как при помощи данного сервиса RemoteXY очень легко настроить дистанционное управление платформой или машинкой. Робомашинкой мы будем управлять при помощи элемента управления «Джойстик», который умеет работать от G-сенсора вашего смартфона. В конце статьи вы найдете видео и можете посмотреть, что же у нас получилось.

Мы собрали очень простую двухколесную тележку, что бы продемонстрировать вам, как построить систему дистанционного управления. В тележке использованы следующие компоненты (мы не претендуем на качество изготовления, тележка собрана для демонстрации возможностей ресурса RemoteXY):

  • Платформа — ее мы вырезали из листового материала. Для простоты использовали ДВП;
  • Переднее колесо — поворотное колесико от кресла;
  • Мотор-редукторы 2 шт.;
  • Колеса , с осью подходящей к мотор-редукторам 2 шт. Колеса мы приобретали совместно с мотор редукторами;
  • Батарейный отсек с выключателем, на 4-е пальчиковые батарейки (тип АА);
  • Arduino , мы использовали все тот же клон Seeeduino;
  • Модуль Bluetooth HC-06 ;
  • Драйвер моторов на чипе L298N;

Все детали можно заказать на китайском сайте за копейки. Правда придется ждать немного. но лучше сэкономить чем переплатить

Электрическая часть и схема подключения всех модулей машинки представлена на следующем рисунке.

Программа управления

Войдите в редактор на этом ресурсе и сконструируйте следующий интерфейс управления:

Установите по центру экрана «Джойстик». В свойствах джойстика выберите установку дополнительного элемента управления «Включить G сенсор». Выберите положение переключателя G-сенсора «Низ-лево». Так же в настройках можете изменить цвет на красный. В дальнейшем джойстиком мы будем управлять движением машинки.

Установите «Переключатель». Разместите его левее джойстика. Можете так же изменить его цвет. Переключателем мы будем управлять светодиодом на плате Arduino на пине 13.

Если вы все правильно сделали, у вас должен получиться примерно такой интерфейс управления:

В настройках проекта выберите целевую платформу, для которой мы получаем исходный код «Arduino (SoftwareSerial)». Нажимаем кнопку «Получить код» и загружаем исходный код на свой компьютер.

Откроем загруженный скетч в IDE Arduino. Скетч прекрасно компилируется без ошибок. Однако, в нем конечно же нет кода для управления нашей машинкой. Наша задача написать этот код. Для образца мы будем использовать загруженный пример.

Обратите внимание на определение структуры RemoteXY_TypeDef в файлеremotexy.h . Структура содержит поля, полностью соответствующие установленным на интерфейсе управления элементам управления. Мы видим переменные joystick_1_x иjoystick_1_y , отражающие координаты x и y нашего джойстика, а так же переменную switch_1 , отражающую переключатель.

/* структура определяет все переменные вашего интерфейса управления */ typedef struct {

/* input variable */ signed char joystick_1_x; /* =-100..100 координата x положения джойстика */ signed char joystick_1_y; /* =-100..100 координата y положения джойстика */ unsigned char switch_1; /* =1 если переключатель включен и =0 если отключен */

/* other variable */ unsigned char connect_flag; /* =1 if wire connected, else =0 */

} RemoteXY_TypeDef;

Далее приводится основной код программы, в который уже встроено управление моторами нашей машинки. Вы можете просто скопировать данный код в свой скетч, или же выборочно добавить необходимые куски кода в загруженный пример.

#include #include #include "remotexy.h"

/* определяем пины управления правым мотором */
#define PIN_MOTOR_RIGHT_UP 7
#define PIN_MOTOR_RIGHT_DN 6
#define PIN_MOTOR_RIGHT_SPEED 10

/* определяем пины управления левым мотором */
#define PIN_MOTOR_LEFT_UP 5
#define PIN_MOTOR_LEFT_DN 4
#define PIN_MOTOR_LEFT_SPEED 9

/* определяем пин управления светодиодом */
#define PIN_LED 13

/* определяем два массива с перечислением пинов для каждого мотора */
unsigned char RightMotor = {PIN_MOTOR_RIGHT_UP, PIN_MOTOR_RIGHT_DN, PIN_MOTOR_RIGHT_SPEED};
unsigned char LeftMotor = {PIN_MOTOR_LEFT_UP, PIN_MOTOR_LEFT_DN, PIN_MOTOR_LEFT_SPEED};

/*
управление скоростью мотора
motor — ссылка на массив пинов
v — скорость мотора, может принимать значения от -100 до 100
*/
void Wheel (unsigned char * motor, int v)
{
if (v>100) v=100;
if (v<-100) v=-100;
if (v>0) {
digitalWrite(motor, HIGH);
digitalWrite(motor, LOW);
analogWrite(motor, v*2.55);
}
else if (v<0) {
digitalWrite(motor, LOW);
digitalWrite(motor, HIGH);
analogWrite(motor, (-v)*2.55);
}
else {
digitalWrite(motor, LOW);
digitalWrite(motor, LOW);
analogWrite(motor, 0);
}
}

void setup()
{
/* инициализация пинов */
pinMode (PIN_MOTOR_RIGHT_UP, OUTPUT);
pinMode (PIN_MOTOR_RIGHT_DN, OUTPUT);
pinMode (PIN_MOTOR_LEFT_UP, OUTPUT);
pinMode (PIN_MOTOR_LEFT_DN, OUTPUT);
pinMode (PIN_LED, OUTPUT);

/* инициализация модуля RemoteXY */
RemoteXY_Init ();

void loop()
{
/* обработчик событий модуля RemoteXY */
RemoteXY_Handler ();

/* управляем пином светодиода */
digitalWrite (PIN_LED, (RemoteXY.switch_1==0)?LOW:HIGH);

/* управляем правым мотором */
Wheel (RightMotor, RemoteXY.joystick_1_y — RemoteXY.joystick_1_x);
/* управляем левым мотором */
Wheel (LeftMotor, RemoteXY.joystick_1_y + RemoteXY.joystick_1_x);
}

В самом начале определяются номера пинов, которые будут использованы для управления моторами. Далее номера пинов группируются в два массива, для правого и левого мотора соответственно. Для управления каждым мотором через драйвер на чипе L298N необходимо использовать 3 сигнала: два дискретных, указывающих направление вращения мотора, и один аналоговый, определяющий скорость вращения. Данными преобразованиями у нас занимается функция Wheel . На вход функции передаем ссылку на массив пинов выбранного мотора, и скорость вращения как знаковое число от -100 до 100. Если передали скорость 0, то мотор отключается.

В предопределенной функции setup настраиваются пины на работу как выходы. Для аналогового сигнала используются пины, которые могут работать как ШИМ преобразователи. Это пины 9 и 10. Они не требуют настройки в среде Arduino.

В предопределенной функции loop в каждой итерации работы программы вызывается обработчик модуля RemoteXY. Далее происходит управление зажиганием светодиода, далее управление моторами. Для управления моторами из структуры RemoteXY считываются поля по координатам джойстика X и Y, на основе координат выполняется математическая операция расчета скорости для каждого мотора, и вызывается функция Wheel , задающая скорость мотора. Данные вычисления выполняются в каждом цикле работы программы, обеспечивая непрерывность вычисления управляющих импульсов моторов на основе координат джойстика.

Залейте получившейся скетч Arduino в контроллер. Загрузите и запустите Android мобильное приложение на ваш смартфон или планшет. Соединитесь с вашим устройством и можете им управлять. Джойстиком можно управлять в обычном режиме, перемещая движок пальцем. Можно включить G-сенсор, и движок джойстика будет перемещаться сам в зависимости от наклона вашего смартфона.

Если после сборки вашего устройства, один или оба мотора вращаются в противоположном направлении, поменяйте провода местами при подключении мотора.

Но и с покупки готового полноценного робота на базе этой платы. Для детей начальной школы или дошкольного возраста такое готовые проекты Arduino даже предпочтительней, т.к. «неожившая» плата выглядит скучновато. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и созданию роботов. Наигравшись в такую игрушку и разобравшись в том, как она работает, можно приступать к совершенствованию модели, разобрать все на части и начать собирать новые проекты на Arduino, используя высвободившиеся плату, приводы и датчики. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Мы предлагаем небольшой обзор готовых роботов на плате Arduino.

Машинка на Arduino, управляемая через Bluetooth

Машинка, управляемая через Bluetooth , стоимостью чуть менее $100. Поставляется в разобранном виде. Помимо корпуса, мотора, колес, литиевой батарейки и зарядного устройства, получаем плату Arduino UNO328, контроллер мотора, Bluetooth адаптер, пульт дистанционного управления и прочее.

Видео с участием этого и еще одного робота:

Более подробное описание игрушки и возможность купить на сайте интернет-магазина DealExtreme .

Робот-черепаха Arduino

Комплект для сборки робота-черепахи стоимостью около $90. Не хватает только панциря, все остальное, необходимое для жизни этого героя, в комплекте: плата Arduino Uno, сервоприводы, датчики, модули слежения, ИК-приемник и пульт, батарея.

Черепаху можно купить на сайте DealExtreme , аналогичный более дешевый робот на Aliexpress .

Гусеничная машина на Arduino, управляемая с сотового телефона

Гусеничная машина, управляемая по Bluetooth с сотового телефона , стоимостью $94. Помимо гусеничной базы получаем плату Arduino Uno и плату расширения, Bluetooth плату, аккумулятор и зарядное устройство.

Гусеничную машину также можно купить на сайте DealExtreme , там же подробное описание. Может быть, более интересный железный Arduino-танк на Aliexpress .

Arduino-автомобиль, проезжающий лабиринты

Автомобиль, проезжающий лабиринты , стоимостью $83. Помимо моторов, платы Arduino Uno и прочего необходимого cодержит модули слежения и модули обхода препятствий.

Готовый робот или каркас для робота

Помимо рассмотренного в обзоре варианта использования готовых комплектов для создания роботов Arduino, можно купить отдельно каркас (корпус) робота — это может быть платформа на колесиках или гусенице, гуманоид, паук и другие модели. В этом случае начинку робота придется делать самостоятельно. Обзор таких корпусов приведен в нашей .

Где еще купить готовых роботов

В обзоре мы выбрали наиболее дешевых и интересных на наш взгляд готовых Arduino-роботов из китайских интернет-магазинов. Если нет времени ждать посылку из Китая — большой выбор готовых роботов в интернет-магазинах Амперка и DESSY . Низкие цены и быструю доставку предлагает интернет-магазин ROBstore . Список рекомендованных магазинов .

Возможно вас также заинтересуют наши обзоры проектов на Arduino:


Обучение Arduino

Не знаете, с чего начать изучение Arduino? Подумайте, что вам ближе — сборка собственных простых моделей и постепенное их усложнение или знакомство с более сложными, но готовыми решениями?

Машинка на arduino и Bluetooth без редактирования кода. Мы будем использовать специализированный бесплатный софт для составления скетча. Кроме того не надо покупать шасси для нашей поделки, подойдет практически любая неисправная радиоуправляемая модель автомобиля или танка.

Предлагаю посмотреть обзорный видеоролик про блютуз-управляемую машинку и ее начинку.

Итак, давайте разберем на живом примере как сделать своими руками дистанционно управляемую по bluetooth c android планшета или смартфона машинку. Статья, как ни странно, рассчитана на начальный уровень знаний. Здесь нет руководства по редактированию кода в Arduino IDE, да и мы использовать его будем только для заливки нашего кода. А составлять алгоритм управления будем в программе под названием FLProg. Программа управления со смартфона — HmiKaskada_free. Но сначала о железе, которое нам понадобится.

Машинка на arduino и Bluetooth — аппаратная часть.

Первое что необходимо это шасси , то есть корпус с колесами и моторчиками, который и будет ездить на радость нам и окружающим. В моем случае был использован корпус от радиоуправляемой игрушки в которой выгорела силовая часть. Перспектива ремонта мне показалась унылой, да и хотелось чего то нового для своих детей. Так и родился этот проект. В корпусе стоят два двигателя которые приводят в движение колеса по бортам машинки, как у танка. Вся электронная начинка отправилась на запчасти.

Для управления электродвигателями нашего будущего творения понадобится Н-мост на микросхеме L298N Ссылка на Али, я брал у именно этот. Картинка кликабельна.

Н-мост для arduino

Может управлять двумя двигателями в диапазоне напряжений 5 — 35 вольт. Поддерживает ШИМ, то есть можно регулировать обороты двигателей. На плате есть вывод стабилизированного напряжения 5 вольт для питания ардуино.

Схема подключения проста и незатейлива:

Следующей неотъемлемой частью электронной начинки нашего проекта является bluetooth модуль HC-06 . Самый обычный модуль для ардуино, настолько популярен что в дополнительном описании не нуждается.

HC-06 bluetooth for arduino

Основным элементом и мозгом в моем случае выступает arduino nano , тут даже фото выкладывать не буду ибо все о ней знают и умеют с ней работать. Кстати подойдет любая плата ардуино, лишь бы в корпус поместилась 😀

Аккумуляторы и провода для пайки в определении спецификации не нуждаются. Выбор аккумуляторов зависит от рабочего напряжения электродвигателей.

Машинка на arduino и Bluetooth — составление скетча.

Повторюсь — никакого копания в коде тут не будет. Мы будем использовать популярную программу FLProg. Скачать ее последнюю версию можно на официальном сайте . Интерфейс проги прост и незатейлив, но имеется огромный функционал и поддержка практически всех популярных модулей. Как ей пользоваться писать не буду так как это потянет на пару статей. Скажу только что я не встречал более удобной и доступной программы для составления скетчей для arduino и ее клонов. Скрин интерфейса:

Интерфейс FLProg

На сайте полно текстовых и видео мануалов, думаю разберетесь.

Мой проект для дистанционно-управляемой машины можно скачать с яндекс-диска через сервис сокращения ссылок.

Машинка на arduino и Bluetooth — интерфейс управления на планшете android.

По многочисленным просьбам написал подробную инструкцию по разработке интерфейса управления на базе HmiKaskada android в статье . Ссылка кликабельна.

Для устройств под управлением android существует программа HmiKaskada (ссылка на ЯндексДиск) . Изначально она разрабатывалась как альтернатива дорогим промышленным HMI панелям. Но пытливые умы быстро смекнули что управлять она может чем угодно. В нашем случае машинкой. Поддерживает беспроводные интерфейсы Wi-Fi и Bluetooth, кроме того можно девайс подключить напрямую через USB.

Есть платная и бесплатная версии программы. У меня есть обе но я принципиально сделал проект в бесплатной версии что бы показать вам и в очередной раз убедиться в абсолютной работоспособности free версии. Основное отличие free от PRO версий это работа только по блютуз.

На форуме FLProg есть гигантская ветка по вопросу совместимости с КаСкадой, да и разработчик активен и общителен. Скрин панели управления выкладывать не вижу смысла — он есть в видеоролике.

Основная идея проекта - создать недорогую автономную четырехколесную подвижную платформу.

В проекте используется логика на базе Arduino, недорогая радиоуправляемая машина, источник питания 9 вольт. В качестве датчиков обратной связи используется инфракрасный передатчик.

Так как оборудование недорогое, можно расценивать эту статью исключительно как общую инструкцию и первый шаг для дальнейших модификаций вашей автономной четырехколесной платформы.

Необходимое оборудование и материалы

  • Arduino
  • Arduino Мотор шилд
  • Радиоуправляемая машина
  • Паяльник
  • Припой
  • Инфракрасный передатчик
  • Инфракрасный приемник
  • Батарейка 9 В с коннекторами
  • Переключатель

*Обратите внимание: если в вашей машине установлена большая плата контроллера, то это, скорее всего, чип TX2 или RX2. Если это так, то вы можете сэкономить немного денег и использовать для двигателей встроенные контроллеры. Хороший пример (на английском языке!) есть .

Разбираем машинку

Ваш первый шаг - разобрать машинку. Снимите корпус и извлеките все платы из машинки. Моторы не трогаем. В проекте нам понадобятся родные шасси, колеса и моторы.


Подготавливаем сенсоры

Подготавливаем электронику. Для начала припаяйте резистор на 100 Ом к одному из контактов на вашем ИК передатчике. Припаиваем провода к другой ноге резистора и ноге датчика. После этого припаиваем два провода к ногам вашего ИК приемника.


Устанавливаем Arduino и датчик

В корпусной части машинки надо сделать отверстия под крепеж вашего контроллера Arduino . Отверстия под крепеж зависят от габаритов подвижной платформы машинки. В данном конкретном случае плата была расположена "перпендикулярно" несущей системе. Подобное расположение удобно еще и тем, что расстояния от двигателей передней и задней подвески до пинов платы примерно одинаковое.

Над передней подвеской устанавливаем наши эмиттер и детектор. Их желательно установить повыше относительно земли. В дальнейшем можно предусмотреть сзади светодиоды, которые будут включаться во время заднего хода машинки.



Переходим к следующему шагу.

Питание

В проекте используется одна батарейка на 9 В (крона). В данном случае ее получилось установить под несущей системой платформы на колесах. Крепим пластиковыми стяжками. В принципе, для увеличения времени автономной работы нашего автомобиля, можно установить две кроны параллельно.



Подключение к Arduino

С подключением можно разобраться и на основании фото. Но на всякий случай, ниже приведена схема подключения в текстовой форме.



ИК светодиод

Позитивный контакт - 5v

Отрицательный контакт - Ground

Позитивный контакт - Analog pin 5

Негативный контакт - Ground

Двигатель

Негативный контакт - Мотор шилд Channel A -

Двигатель для поворота

Позитивный контакт - Мотор шилд Channel B +

Негативный контакт - Мотор шилд Channel B -

Позитивный контакт - Мотор шилд Vin

Негативный контакт - Мотор шилд Gnd

Программа Arduino

Учитывая специфику проекта, вам надо внести в приведенный ниже базовый скетч достаточно много изменений, которые зависят от размера машинки и колес, скорости вращения колес, веса авто, освещения окружающей среды.

int irsensor = A5;

int measure = 1;

int ambientir = 0;

//настройка канала A (Channel A)

pinMode(12, OUTPUT); //инициализация контакта Motor Channel A

pinMode(9, OUTPUT); //Инициализация контакта тормоза - Brake Channel A

pinMode(irsensor, INPUT);

digitalWrite(irsensor, HIGH);

Serial.begin(9600);

ambientir = ambientir + analogRead(irsensor);

measure = measure + 1;

ambientir = ambientir / 10;

distance = analogRead(irsensor);

digitalWrite(12, HIGH); //Обечпечиваем обратное направление вращения ротора на Channel A

digitalWrite(9, LOW); //Отключаем тормоз на Channel A

analogWrite(3, 100); //Вращаем ротор мотора на Channel A на половине максимальных оборотов

if(distance > ambientir - 50){

digitalWrite(12, LOW);

digitalWrite(9, LOW);

analogWrite(3, 100);

Serial.println(distance);

Приведенный выше костяк программы для Arduino можно (и даже нужно!) дорабатывать под вашу конкретную конструкцию, но общий концепт вы должны были уловить.

Результат, тестирование и дальнейшие варианты модификаций

Как видите на фото, оригинальный корпус машинки был окрашен в бежевый цвет и установлен на стойках на подвижную четырехколесную платформу.



После тестирования разработанной конструкции можно выделить следующие проблемы :

  • Ограниченный диапазон чувствительности сенсора;
  • Проблемы, связанные со скоростью машины, а именно - невозможность быстрой остановки;
  • Необходимость подстраивать датчик под разные условия освещения;
  • Ну и конечно же, дешевый китайский пластик никоим образом не придает автономной машинке на Arduino хорошей жесткости и надежности конструкции.

В принципе, внести компенсацию в зависимости от уровня освещения можно, но это отдельная история и модификация, которые не входили в задачи базового проекта.

Машинка не врезается в стены, но с 90% вероятностью соберет бампером все ножки стульев и столов в комнате. То есть, с обнаружением более мелких препятствий есть явные проблемы. Соответственно, надо либо увеличивать количество эмиттеров, либо использовать более дорогостоящие модели с большей чувствительностью.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Машинка на Ардуино с Bluetooth управлением от Android телефона — это очень простой, но интересный проект на Arduino UNO с использованием модуля Motor Shield. На этой странице вы узнаете какие потребуются компоненты для изготовления робота машинки на Ардуино своими руками, пошаговую инструкцию по сборке электрической схемы и сможете скачать все необходимые программы для Android и Arduino.

Видео. Машинка на блютуз управлении ардуино

Для этого проекта использовался модуль Motor Shield L293D , два колеса с редукторами, плата Arduino UNO, блютуз модуль HC-05 и два светодиода для фар. Управление происходит дистанционно через Bluetooth сигнал от смартфона или планшета. После сборки модели и установки программ, вы сможете через приложение на смартфоне поворачивать машинкой, ездить вперед и назад, включать и выключать фары.

Машинка на Ардуино своими руками

Для этого проекта нам потребуется:

  • плата Arduino UNO;
  • Motor Control Shield L293D;
  • Bluetooth модуль HC-05/06;
  • два мотора с редукторами и колесами;
  • аккумулятор на 9В (крона);
  • 2 резистора и 2 светодиода;
  • корпус и колеса от старой машинки;
  • паяльник, термопистолет, канцелярский нож;
  • провода, припой и изолента.
Детали для робота — машинки на Ардуино УНО

Схема сборки машинки на Ардуино

Если у вас есть все необходимые детали (в проекте можно обойтись без светодиодов и резисторов), то далее мы рассмотрим, как сделать машинку из ардуино своими руками. Для начала следует припаять к контактам моторчиков провода и зафиксировать их изолентой, чтобы контакты не оторвались. Провода необходимо соединить с клеммниками M1 и M2 на Motor Shield (полярность потом можно будет поменять).


Питание на Bluetooth модуль идет от контактов для сервопривода, в проекте серво нам не понадобятся. А на питание идет стабилизированное напряжение 5 Вольт, что нам подходит. К портам TX и RX удобнее будет припаять коннекторы «мама», а к портам «Pin0» и «Pin1» на Motor Shield припаять штырьки (BLS). Таким образом, вы сможете легко отключать Bluetooth модуль от Arduino при необходимости загрузки скетча.

Управление светодиодами идет от порта «Pin2», здесь провод можно припаять напрямую к порту. Если вы делаете несколько машинок с Блютуз, которыми будете управлять одновременно, то рекомендуем сделать перепрошивку модуля HC-05 . Делается прошивка модуля очень просто, а затем вы уже не будете путать машинки, так как у каждой будет отображаться свое уникальное имя на Андроиде.

Приложение и скетч для машинки на Ардуино

После сборки схемы загрузите следующий скетч для машинки (не забудьте отключать Bluetooth модуль от Ардуино при загрузке) и установите приложение на смартфоне. Все файлы для проекта (библиотека AFMotor.h, скетч для машинки и приложение для Android) можно скачать одним архивом по прямой ссылке .

#include // подключаем библиотеку для шилда AF_DCMotor motor1(1); // подключаем мотор к клеммнику M1 AF_DCMotor motor2(2); // подключаем мотор к клеммнику M2 int val; // освобождаем память в контроллере void setup () { Serial .begin (9600); pinMode (2, OUTPUT ); // Порт для светодиодов motor1.setSpeed (250); motor1.run (RELEASE ); // останавливаем мотор motor2.setSpeed (250); // задаем максимальную скорость мотора motor2.run (RELEASE ); // останавливаем мотор } void loop () { if (Serial .available ()) // проверяем, поступают ли какие-то команды { val = Serial .read (); if (val == "f") { // едем вперед motor1.run (FORWARD ); motor1.setSpeed (250); motor2.run (FORWARD ); motor2.setSpeed (250); } if (val == "b") { // едем назад motor1.run (BACKWARD ); motor1.setSpeed (200); motor2.run (BACKWARD ); motor2.setSpeed (200); } if (val == "s") { // останавливаемся motor1.run (RELEASE ); motor2.run (RELEASE ); } if (val == "l") { // поворачиваем налево motor1.run (FORWARD ); motor1.setSpeed (100); motor2.run (BACKWARD ); motor2.setSpeed (250); } if (val == "r") { // поворачиваем направо motor1.run (BACKWARD ); motor1.setSpeed (250); motor2.run (FORWARD ); motor2.setSpeed (100); } if (val == "1") { // включаем светодиоды digitalWrite (2,HIGH ); } if (val == "0") { // выключаем светодиоды digitalWrite (2,LOW ); } } }

Пояснения к коду:

  1. Для тестирования, можно отправлять команды с компьютера через USB;
  2. Вращение моторов при подключении к аккумулятору будут отличаться;
  3. Вы можете задавать свою скорость вращения моторами.

После проверки работы машинки, установите приложение на смартфон или планшет. При первом подключении к Bluetooth модулю HC-05/06, потребуется сделать сопряжение с Андроид (затем сопряжение будет выполняться автоматически). Если у вас возникли сложности с подключением — прочитайте эту статью



Понравилась статья? Поделиться с друзьями: