Процесс как структура данных. Лекции по базам данных

Данные, хранящиеся в памяти ЭВМ, представляют собой совокупность нулей и единиц (битов). Биты объединяются в последовательности: байты, слова и т.д. Каждому участку оперативной памяти, который может вместить один байт или слово, присваивается порядковый номер (адрес).

Какой смысл заключен в данных, какими символами они выражены - буквенными или цифровыми, что означает то или иное число - все это определяется программой обработки. Все данные, необходимые для решения практических задач, подразделяются на несколько различных типов, причем понятие тип связывается не только с представлением данных в адресном пространстве, но и со способом их обработки .

Любые данные могут быть отнесены к одному из двух типов: основному (простому), форма представления которого определяется архитектурой ЭВМ, или сложному, конструируемому пользователем для решения конкретных задач.

Данные простого типа это - символы, числа и т.п. элементы, дальнейшее дробление которых не имеет смысла. Из элементарных данных формируются структуры (сложные типы) данных.

Некоторые структуры:

· Массив (функция с конечной областью определения) - простая совокупность элементов данных одного типа, средство оперирования группой данных одного типа. Отдельный элемент массива задается индексом. Массив может быть одномерным, двумерным и т.д. Разновидностями одномерных массивов переменной длины являются структуры типа кольцо, стек, очередь и двухсторонняя очередь .

· Запись (декартово произведение) - совокупность элементов данных разного типа. В простейшем случае запись содержит постоянное количество элементов, которые называют полями . Совокупность записей одинаковой структуры называется файлом . (Файлом называют также набор данных во внешней памяти, например, на магнитном диске). Для того, чтобы иметь возможность извлекать из файла отдельные записи, каждой записи присваивают уникальное имя или номер, которое служит ее идентификатором и располагается в отдельном поле. Этот идентификатор называют ключом .

Такие структуры данных как массив или запись занимают в памяти ЭВМ постоянный объем, поэтому их называют статическими структурами. К статическим структурам относится также множество .

Имеется ряд структур, которые могут изменять свою длину - так называемые динамические структуры . К ним относятся дерево, список, ссылка.

Важной структурой, для размещения элементов, которой требуется нелинейное адресное пространство, является дерево . Существует большое количество структур данных, которые могут быть представлены как деревья. Это, например, классификационные, иерархические, рекурсивные и др. структуры. Более подробно о деревьях рассказано в параграфе 1.2.1.

Рис. 1.1. Классификация типов данных

1.1.2.Обобщенные структуры или модели данных.

Выше мы рассмотрели несколько типов структур, являющихся совокупностями элементов данных: массив, дерево, запись. Более сложный тип данных может включать эти структуры в качестве элементов. Например, элементами записи может быть массив, стек, дерево и т.д.

Существует большое разнообразие сложных типов данных, но исследования, проведенные на большом практическом материале, показали, что среди них можно выделить несколько наиболее общих. Обобщенные структуры называют также моделями данных , т.к. они отражают представление пользователя о данных реального мира.

Любая модель данных должна содержать три компоненты:

1. структура данных - описывает точку зрения пользователя на представление данных.

2. набор допустимых операций , выполняемых на структуре данных. Модель данных предполагает, как минимум, наличие языка определения данных (ЯОД), описывающего структуру их хранения, и языка манипулирования данными (ЯМД), включающего операции извлечения и модификации данных.

3. ограничения целостности - механизм поддержания соответствия данных предметной области на основе формально описанных правил.

В процессе исторического развития в СУБД использовалось следующие модели данных:

· иерархическая,

· сетевая,

· реляционная.

В последнее время все большее значение приобретает объектно-ориентированный подход к представлению данных.

1.2.Методы доступа к данным

Вопросы представления данных тесно связаны с операциями, при помощи которых эти данные обрабатываются. К числу таких операций относятся: выборка, изменение, включение и исключение данных. В основе всех перечисленных операций лежит операция доступа , которую нельзя рассматривать независимо от способа представления.

В задачах поиска предполагается, что все данные хранятся в памяти с определенной идентификацией и, говоря о доступе, имеют в виду, прежде всего, доступ к данным (называемым ключами), однозначно идентифицирующим связанные с ними совокупности данных.

Пусть нам необходимо организовать доступ к файлу, содержащему набор одинаковых записей, каждая из которых имеет уникальное значение ключевого поля. Самый простой способ поиска - последовательно просматривать каждую запись в файле до тех пор, пока не будет найдена та, значение ключа которой удовлетворяет критерию поиска. Очевидно, этот способ весьма неэффективен, поскольку записи в файле не упорядочены по значению ключевого поля. Сортировка записей в файле также неприменима, поскольку требует еще больших затрат времени и должна выполняться после каждого добавления записи. Поэтому, поступают следующим образом - ключи вместе с указателями на соответствующие записи в файле копируют в другую структуру, которая позволяет быстро выполнять операции сортировки и поиска. При доступе к данным вначале в этой структуре находят соответствующее значение ключа, а затем по хранящемуся вместе с ним указателю получают запись из фала.

Существуют два класса методов, реализующих доступ к данным по ключу:

· методы поиска по дереву,

· методы хеширования.

1.2.1.Методы поиска по дереву

Определение: Деревом называется конечное множество, состоящее из одного или более элементов, называемых узлами, таких, что:

1. между узлами имеет место отношение типа "исходный - порожденный";

2. есть только один узел, не имеющий исходного узла. Он называется корнем;

3. все узлы за исключением корня имеют только один исходный; каждый узел может иметь несколько порожденных узлов;

4. отношение "исходный - порожденный" действует только в одном направлении, т.е. ни один потомок некоторого узла не может стать для него предком.

Число порожденных отдельного узла (число поддеревьев данного корня) называется его степенью . Узел с нулевой степенью называют листом или концевым узлом. Максимальное значение степени всех узлов данного дерева называется степенью дерева .

Если в дереве между порожденными узлами, имеющими общий исходный, считается существенным их порядок, то дерево называется упорядоченным . В задачах поиска почти всегда рассматриваются упорядоченные деревья.

Упорядоченное дерево, степень которого не больше 2 называется бинарным деревом. Бинарное дерево особенно часто используется при поиске в оперативной памяти. Алгоритм поиска: вначале аргумент поиска сравнивается с ключом, находящимся в корне. Если аргумент совпадает с ключом, поиск закончен, если же не совпадает, то в случае, когда аргумент оказывается меньше ключа, поиск продолжается в левом поддереве, а в случае, когда больше ключа - в правом поддереве. Увеличив уровень на 1, повторяют сравнение, считая текущий узел корнем.

Пример: Пусть дан список студентов, содержащий их фамилии и средний бал успеваемости (см. таблицу 1.1). В качестве ключа используется фамилия студента. Предположим, что все записи имеют фиксированную длину, тогда в качестве указателя можно использовать номер записи. Смещение записи в файле в этом случае будет вычисляться как ([номер_записи ] -1) * [длина_записи ] . Пусть аргумент поиска "Петров". На рисунке 1.2 показано одно из возможных для этого набора данных бинарное дерево поиска и путь поиска.

Таблица 1.1

Васильев

Кузнецов

Тихомиров

Рис. 1.2. Поиск по бинарному дереву

Заметим, что здесь используется следующее правило сравнения строковых переменных: считается, что значение символа соответствует его порядковому номеру в алфавите. Поэтому "И" меньше "К", а "К" меньше "С". Если текущие символы в сравниваемых строках совпадают, то сравниваются символы в следующих позициях.

Бинарные деревья особенно эффективны в случае, когда множество ключей заранее неизвестно, либо когда это множество интенсивно изменяется. Очевидно, что при переменном множестве ключей лучше иметь сбалансированное дерево .

Определение: Бинарное дерево называют сбалансированным (balanced ), если высота левого поддерева каждого узла отличается от высоты правого поддерева не более чем на 1.

При поиске данных во внешней памяти очень важной является проблема сокращения числа перемещений данных из ВЗУ в оперативную память. Поэтому, в данном случае по сравнению с бинарными деревьями более выгодными окажутся сильно ветвящиеся деревья - т.к. их высота меньше, то при поиске потребуется меньше обращений к внешней памяти. Наибольшее применение в этом случае получили В-деревья (В - balanced )

Определение: В-деревом порядка n называется сильно ветвящееся дерево степени 2n+1, обладающее следующими свойствами:

  1. Каждый узел, за исключением корня, содержит не менее n и не более 2n ключей.
  2. Корень содержит не менее одного и не более 2n ключей.
  3. Все листья расположены на одном уровне.
  4. Каждый промежуточный узел содержит два списка: упорядоченный по возрастанию значений список ключей и соответствующий ему список указателей (для листовых узлов список указателей отсутствует).

Для такого дерева:

· сравнительно просто может быть организован последовательный доступ, т.к. все листья расположены на одном уровне;

· при добавлении и изменении ключей все изменения ограничиваются, как правило, одним узлом.

Рис. 1.3.Сбалансированное дерево

В -дерево, в котором истинные значения содержатся только в листьях (концевых узлах), называется В+- деревом . Во внутренних узлах такого дерева содержатся ключи-разделители, задающие диапазон изменения ключей для поддеревьев.

Подробнее о различных видах сбалансированных деревьев, а также методах их реализации можно прочитать в литературе, список которой приведен в конце страницы. Следует отметить, что B - деревья наилучшим образом подходят только для организации доступа к достаточно простым (одномерным) структурам данных. Для доступа к более сложным структурам, таким, например, как пространственные (многомерные) данные в последнее время все чаще используют R -деревья.

R -дерево (R -Tree ) это индексная структура для доступа к пространственным данным, предложенная А. Гуттманом (Калифорнийский университет, Беркли). R-дерево допускает произвольное выполнение операций добавления, удаления и поиска данных без периодической переиндексации.

Для представления данных используются записи, каждая из которых имеет уникальный идентификатор (tuple-identifier ). В каждом концевом узле (листе) дерева содержится запись вида (I,tuple-identifier ) , где I - n -мерный параллелепипед, содержащий указатели на пространственные данные (его также называют minimal bounding rectangle , MBR), а каждый элемент в tuple-identifier содержит верхнюю и нижнюю границу параллелепипеда в соответствующем измерении.

Неконцевые узлы содержат записи вида (I, childnode-pointer ) , где I минимальный ограничивающий параллелепипед для MBR всех узлов, производных по отношению к данному. Childnode-pointer - это указатель на производные узлы.

Пусть M и m <= M/2 соответственно максимальное и мимимальное количество элементов, которое может быть размещено в узле. Тогда свойства R-дерева можно описать следующим образом:

· R-Tree является сильно сбалансированным деревом, т.е. все листья находятся на одном уровне.

· Корневой узел имеет, как минимум, двух потомков.

· Для каждого элемента (I, childnode-pointer ) в неконцевом узле I является наименьшим возможным параллелепипедом, т.е. содержит все параллелепипеды производных узлов.

· Каждый концевой узел (лист) содержит от m до M индексных записей.

· Для каждой индексной записи (I, tuple-identifier ) в концевом узле I является параллелепипедом, который содержит n -мерный объект данных, на который указывает tuple-identifier .

1.2.2.Хеширование

Этот метод используется тогда, когда все множество ключей заранее известно и на время обработки может быть размещено в оперативной памяти. В этом случае строится специальная функция, однозначно отображающая множество ключей на множество указателей, называемая хеш-функцией (от английского слова "to hash " - резать, измельчать). Имея такую функцию можно вычислить адрес записи в файле по заданному ключу поиска. В общем случае, ключевые данные, используемые для определения адреса записи, организуются в виде таблицы, называемой хеш-таблицей.

Если множество ключей заранее неизвестно или очень велико, то от идеи однозначного вычисления адреса записи по ее ключу отказываются, а хеш-функцию рассматривают просто как функцию, рассеивающую множество ключей во множество адресов.

Аннотация: Дается общее понятие структуры данных как исполнителя, который организует работу с данными: хранение, добавление и удаление, поиск и т.п. Рассматриваются реализации одних структур на базе других, в частности, реализации на базе массива. Приводятся наиболее важные из простейших структур данных: очередь и стек, а также их непрерывные реализации на базе массива. Даются многочисленные примеры использования стека в программировании. Рассматривается обратная польская запись формулы (знак операции после аргументов) и способ ее вычисления на стековой машине. В качестве примера использования обратной польской записи рассматривается графический язык PostScript. Материал иллюстрируется проектом "Cтековый калькулятор", реализованным на языке Си.

Структуры данных

"Алгоритмы + структуры данных = программы". Это - название книги Никлауса Вирта, знаменитого швейцарского специалиста по программированию, автора языков Паскаль , Модула-2, Оберон. С именем Вирта связано развитие структурного подхода к программированию. Н.Вирт известен также как блестящий педагог и автор классических учебников.

Обе составляющие программы, выделенные Н.Виртом, в равной степени важны. Не только несовершенный алгоритм , но и неудачная организация работы с данными может привести к замедлению работы программы в десятки, а иногда и в миллионы раз. С другой стороны, владение теорией программирования и умение систематически применять ее на практике позволяет быстро разрабатывать эффективные и в то же время эстетически красивые программы.

Общее понятие структуры данных

Структура данных - это исполнитель , который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск и т.д. Структура данных поддерживает определенный порядок доступа к ним. Структуру данных можно рассматривать как своего рода склад или библиотеку. При описании структуры данных нужно перечислить набор действий, которые возможны для нее, и четко описать результат каждого действия. Будем называть такие действия предписаниями . С программной точки зрения, системе предписаний структуры данных соответствует набор функций, которые работают над общими переменными.

Структуры данных удобнее всего реализовывать в объектно-ориентированных языках. В них структуре данных соответствует класс , сами данные хранятся в переменных-членах класса (или доступ к данным осуществляется через переменные-члены), системе предписаний соответствует набор методов класса. Как правило, в объектно-ориентированных языках структуры данных реализуются в виде библиотеки стандартных классов: это так называемые контейнерные классы языка C++, входящие в стандартную библиотеку классов STL , или классы, реализующие различные структуры данных из библиотеки Java Developer Kit языка Java .

Тем не менее, структуры данных столь же успешно можно реализовывать и в традиционных языках программирования, таких как Фортран или Си . При этом следует придерживаться объектно-ориентированного стиля программирования: четко выделить набор функций, которые осуществляют работу со структурой данных, и ограничить доступ к данным только этим набором функций. Сами данные реализуются как статические (не глобальные) переменные. При программировании на языке Си структуре данных соответствуют два файла с исходными текстами:

  1. заголовочный, или h-файл, который описывает интерфейс структуры данных, т.е. набор прототипов функций, соответствующий системе предписаний структуры данных;
  2. файл реализации, или Си-файл, в котором определяются статические переменные, осуществляющие хранение и доступ к данным, а также реализуются функции, соответствующие системе предписаний структуры данных

Структура данных обычно реализуется на основе более простой базовой структуры , ранее уже реализованной, или на основе массива и набора простых переменных. Следует четко различать описание структуры данных с логической точки зрения и описание ее реализации. Различных реализаций может быть много, с логической же точки зрения (т.е. с точки зрения внешнего пользователя) все они эквивалентны и различаются, возможно, лишь скоростью выполнения предписаний.

Понятие структуры данных является настолько фундаментальным, что для него сложно подобрать простое определение. Задача упрощается, если попробовать сформулировать это понятие по отношению к типам данным и переменным. Как известно, программа представляет собой единство алгоритма (процедур, функций) и обрабатываемых ими данных. Данные, в свою очередь, определяются базовыми и производными типами данных -"идеальными" представлениями переменных фиксированной размерности с наборами известных операций над ними и их компонентами. Переменные -это именованные области памяти, в которые "отображаются" сконструированные типы данных.
В программе всегда можно выделить группы косвенно связанных (по использованию данных в одних и тех же процедурах и функциях) и непосредственно связанных (по наличию взаимосвязей через указатели) переменных. Их в первом приближении и можно считать структурами данных.

Различаются ПРОСТЫЕ (базовые, примитивные) структуры (типы) данных и ИНТЕГРИРОВАННЫЕ (структурированные, композитные, сложные). Простыми называются такие структуры данных, которые не могут быть расчленены на составные части, большие, чем биты. С точки зрения физической структуры важным является то обстоятельство, что в данной машинной архитектуре, в данной системе программирования мы всегда можем заранее сказать, каков будет размер данного простого типа и какова структура его размещения в памяти. С логической точки зрения простые данные являются неделимыми единицами. Интегрированными называются такие структуры данных, составными частями которых являются другие структуры данных - простые или в свою очередь интегрированные. Интегрированные структуры данных конструируются программистом с использованием средств интеграции данных, предоставляемых языками программирования.

В зависимости от отсутствия или наличия явно заданных связей между элементами данных следует различать НЕСВЯЗНЫЕ структуры (векторы, массивы, строки, стеки, очереди) и СВЯЗНЫЕ структуры (связные списки).

Весьма важный признак структуры данных - ее изменчивость - изменение числа элементов и (или) связей между элементами структуры. В определении изменчивости структуры не отражен факт изменения значений элементов данных, поскольку в этом случае все структуры данных имели бы свойство изменчивости. По признаку изменчивости различают структуры СТАТИЧЕСКИЕ, ПОЛУСТАТИЧЕСКИЕ, ДИНАМИЧЕСКИЕ. Классификация структур данных по признаку изменчивости приведена на рис. 1.1. Базовые структуры данных, статические, полустатические и динамические характерны для оперативной памяти и часто называются оперативными структурами. Файловые структуры соответствуют структурам данных для внешней памяти.



Рис. 1.1. Классификация структур данных

Важный признак структуры данных - характер упорядоченности ее элементов. По этому признаку структуры можно делить на ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ структуры.

В зависимости от характера взаимного расположения элементов в памяти линейные структуры можно разделить на структуры с ПОСЛЕДОВАТЕЛЬНЫМ распределением элементов в памяти (векторы, строки, массивы, стеки, очереди) и структуры с ПРОИЗВОЛЬНЫМ СВЯЗНЫМ распределением элементов в памяти (односвязные, двусвязные списки). Пример нелинейных структур - многосвязные списки, деревья, графы.

В языках программирования понятие "структуры данных" тесно связано с понятием "типы данных". Любые данные, т.е. константы, переменные, значения функций или выражения, характеризуются своими типами.

Информация по каждому типу однозначно определяет:

· 1) структуру хранения данных указанного типа, т.е. выделение памяти и представление данных в ней, с одной стороны, и интерпретирование двоичного представления, с другой;

· 2) множество допустимых значений, которые может иметь тот или иной объект описываемого типа;

· 3) множество допустимых операций, которые применимы к объекту описываемого типа.

СТРУКТУРА ДАННЫХ - совокупность физически (типы данных) и логически (алгоритм, функции) взаимосвязанных переменных и их значений.

Заметим, что понятие структуры данных имеет отношение не только к переменным, которые ее составляют, но и к алгоритмам (функциям), которые не только логически связывают переменные между собой, но и определяют внутренние значения, которые также должны быть свойственны этой структуре данных. Например, последовательность положительных значений, размещенная в массиве и имеющая переменную размерность (структура данных), может иметь нулевой ограничитель. Все операции по формированию и проверке этого ограничителя реализуются функциями. Таким образом, можно сказать, что значительная часть структуры данных "зашита" в алгоритмах ее обработки.
Известный нам способ определения переменных через типы данных характеризуется тем, что, во-первых, количество переменных в программе фиксировано, а во-вторых, размерность их не может быть изменена во время работы программы. Если взаимосвязи между этими переменными имеют более-менее постоянный характер, то такие структуры данных можно назвать статическими.

СТАТИЧЕСКАЯ СТРУКТУРА ДАННЫХ - совокупность фиксированного количества переменных постоянной размерности с неизменным характером связей между ними
И наоборот, если один из параметров структуры данных -количество переменных, их размерность или взаимосвязи между ними меняются во время работы программы, то такие структуры данных называются динамическими.

ДИНАМИЧЕСКАЯ СТРУКТУРА ДАННЫХ - совокупность переменных, количество, размерность или характер взаимосвязей между которыми меняется во время работы программ.

Динамические структуры данных базируются на двух элементах языка программирования:

· динамических переменных, количество которых может меняться и в конечном счете определяется самой программой. Кроме того, возможность создания динамических массивов позволяет говорить о данных переменной размерности;

· указателях, которые обеспечивают непосредственную взаимосвязь данных и возможность изменения этих связей.

Таким образом, близко к истине и такое определение: динамические структуры данных -это динамические переменные и массивы, связанные указателями.
Говоря о структурах данных, нельзя забывать, что обычные переменные размещаются в оперативной памяти (внутренней памяти компьютера). Поэтому обычно и структуры данных имеют отношение к памяти. Однако существует еще и внешняя память, которая в языке доступна опосредованно через операторы (Паскаль) или функции (Си), работающие с файлами. В режиме двоичного файла произвольного доступа любой файл представляет собой аналог неограниченной прямо адресуемой области памяти, то есть с точки зрения программы выглядит так же, как обычная память. Естественно, что программа может копировать переменные из памяти в произвольное место файла и обратно, а значит и организовывать в файле любые (в том числе и динамические) структуры данных.
Структура данных - это исполнитель, который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск и т.д. Структура данных поддерживает определенный порядок доступа к ним. Структуру данных можно рассматривать как своего рода склад или библиотеку. При описании структуры данных нужно перечислить набор действий, которые возможны для нее, и четко описать результат каждого действия. Будем называть такие действия предписаниями. С программной точки зрения, системе предписаний структуры данных соответствует набор функций, которые работают над общими переменными.
Структуры данных удобнее всего реализовывать в объектно-ориентированных языках. В них структуре данных соответствует класс, сами данные хранятся в переменных-членах класса (или доступ к данным осуществляется через переменные-члены), системе предписаний соответствует набор методов класса. Как правило, в объектно-ориентированных языках структуры данных реализуются в виде библиотеки стандартных классов: это так называемые контейнерные классы языка C++, входящие в стандартную библиотеку классов STL, или классы, реализующие различные структуры данных из библиотеки Java Developer Kit языка Java.
Тем не менее, структуры данных столь же успешно можно реализовывать и в традиционных языках программирования, таких как Фортран или Си. При этом следует придерживаться объектно-ориентированного стиля программирования: четко выделить набор функций, которые осуществляют работу со структурой данных, и ограничить доступ к данным только этим набором функций. Сами данные реализуются как статические (не глобальные) переменные. При программировании на языке Си структуре данных соответствуют два файла с исходными текстами:
1. заголовочный, или h-файл, который описывает интерфейс структуры данных, т.е. набор прототипов функций, соответствующий системе предписаний структуры данных;
2. файл реализации, или Си-файл, в котором определяются статические переменные, осуществляющие хранение и доступ к данным, а также реализуются функции, соответствующие системе предписаний структуры данных
Структура данных обычно реализуется на основе более простой базовой структуры, ранее уже реализованной, или на основе массива и набора простых переменных. Следует четко различать описание структуры данных с логической точки зрения и описание ее реализации. Различных реализаций может быть много, с логической же точки зрения (т.е. с точки зрения внешнего пользователя) все они эквивалентны и различаются, возможно, лишь скоростью выполнения предписаний.

Необходимым условием хранения информации в памяти компьютера является возможность преобразования этой самой информации в подходящую для компьютера форму. В том случае, если это условие выполняется, следует определить структуру, пригодную именно для наличествующей информации, ту, которая предоставит требующийся набор возможностей работы с ней.

Кольцевой список

Здесь под структурой понимается способ представления информации, посредством которого совокупность отдельно взятых элементов образует нечто единое, обусловленное их взаимосвязью друг с другом. Скомпонованные по каким-либо правилам и логически связанные межу собой, данные могут весьма эффективно обрабатываться, так как общая для них структура предоставляет набор возможностей управления ими – одно из того за счет чего достигаются высокие результаты в решениях тех или иных задач.

Но не каждый объект представляем в произвольной форме, а возможно и вовсе для него имеется лишь один единственный метод интерпретации, следовательно, несомненным плюсом для программиста будет знание всех существующих структур данных. Таким образом, часто приходиться делать выбор между различными методами хранения информации, и от такого выбора зависит работоспособность продукта.

Говоря о не вычислительной технике, можно показать ни один случай, где у информации видна явная структура. Наглядным примером служат книги самого разного содержания. Они разбиты на страницы, параграфы и главы, имеют, как правило, оглавление, то есть интерфейс пользования ими. В широком смысле, структурой обладает всякое живое существо, без нее органика навряд-ли смогла бы существовать.

Вполне вероятно, читателю приходилось сталкиваться со структурами данных непосредственно в информатике, например, с теми, что встроены в язык программирования. Часто они именуются типами данных. К таковым относятся: массивы, числа, строки, файлы и т. д.

Методы хранения информации, называемые «простыми», т. е. неделимыми на составные части, предпочтительнее изучать вместе с конкретным языком программирования, либо же глубоко углубляться в суть их работы. Поэтому здесь будут рассмотрены лишь «интегрированные» структуры, те которые состоят из простых, а именно: массивы, списки, деревья и графы.

Массивы.

Массив – это структура данных с фиксированным и упорядоченным набором однотипных элементов (компонентов). Доступ к какому-либо из элементов массива осуществляется по имени и номеру (индексу) этого элемента. Количество индексов определяет размерность массива. Так, например, чаще всего встречаются одномерные (вектора) и двумерные (матрицы) массивы.

Первые имеют один индекс, вторые – два. Пусть одномерный массив называется A, тогда для получения доступа к его i-ому элементу потребуется указать название массива и номер требуемого элемента: A[i]. Когда A – матрица, то она представляема в виде таблицы, доступ к элементам которой осуществляется по имени массива, а также номерам строки и столбца, на пересечении которых расположен элемент: A, где i – номер строки, j – номер столбца.

В разных языках программирования работа с массивами может в чем-то различаться, но основные принципы, как правило, везде одни. В языке Pascal, обращение к одномерному и двумерному массиву происходит точно так, как это показано выше, а, например, в C++ двумерный массив следует указывать так: A[i][j]. Элементы массива нумеруются поочередно. На то, с какого значения начинается нумерация, влияет язык программирования. Чаще всего этим значением является 0 или 1.

Массивы, описанного типа называются статическими, но существуют также массивы по определенным признакам отличные от них: динамические и гетерогенные. Динамичность первых характеризуется непостоянностью размера, т. е. по мере выполнения программы размер динамического массива может изменяться. Такая функция делает работу с данными более гибкой, но при этом приходится жертвовать быстродействием, да и сам процесс усложняется.

Обязательный критерий статического массива, как было сказано, это однородность данных, единовременно хранящихся в нем. Когда же данное условие не выполняется, то массив является гетерогенным. Его использование обусловлено недостатками, которые имеются в предыдущем виде, но оно оправданно во многих случаях.

Таким образом, даже если Вы определились со структурой, и в качестве нее выбрали массив, то этого все же недостаточно. Ведь массив это только общее обозначение, род для некоторого числа возможных реализаций. Поэтому необходимо определиться с конкретным способом представления, с наиболее подходящим массивом.

Списки.

Список – абстрактный тип данных, реализующий упорядоченный набор значений. Списки отличаются от массивов тем, что доступ к их элементам осуществляется последовательно, в то время как массивы – структура данных произвольного доступа. Данный абстрактный тип имеет несколько реализаций в виде структур данных. Некоторые из них будут рассмотрены здесь.

Список (связный список) – это структура данных, представляющая собой конечное множество упорядоченных элементов, связанных друг с другом посредствам указателей. Каждый элемент структуры содержит поле с какой-либо информацией, а также указатель на следующий элемент. В отличие от массива, к элементам списка нет произвольного доступа.

Односвязный список

В односвязном списке, приведенным выше, начальным элементом является Head list (голова списка [произвольное наименование]), а все остальное называется хвостом. Хвост списка составляют элементы, разделенные на две части: информационную (поле info) и указательную (поле next). В последнем элементе вместо указателя, содержится признак конца списка – nil.

Односвязный список не слишком удобен, т. к. из одной точки есть возможность попасть лишь в следующую точку, двигаясь тем самым в конец. Когда кроме указателя на следующий элемент есть указатель и на предыдущий, то такой список называется двусвязным.

Двусвязный список

Возможность двигаться как вперед, так и назад полезна для выполнения некоторых операций, но дополнительные указатели требуют задействования большего количества памяти, чем таковой необходимо в эквивалентном односвязном списке.

Для двух видов списков описанных выше существует подвид, называемый кольцевым списком. Сделать из односвязного списка кольцевой можно добавив всего лишь один указатель в последний элемент, так чтобы он ссылался на первый. А для двусвязного потребуется два указателя: на первый и последний элементы.

Кольцевой список

Помимо рассмотренных видов списочных структур есть и другие способы организации данных по типу «список», но они, как правило, во многом схожи с разобранными, поэтому здесь они будут опущены.

Кроме различия по связям, списки делятся по методам работы с данными. О некоторых таких методах сказано далее.

Стек.

Стек

Стек характерен тем, что получить доступ к его элементом можно лишь с одного конца, называемого вершиной стека, иначе говоря: стек – структура данных, функционирующая по принципу LIFO (last in - first out, «последним пришёл - первым вышел»). Изобразить эту структуру данных лучше в виде вертикального списка, например, стопки каких-либо вещей, где чтобы воспользоваться одной из них нужно поднять все те вещи, что лежат выше нее, а положить предмет можно лишь на вверх стопки.

В показанном односвязном списке операции над элементами происходят строго с одного конца: для включения нужного элемента в пятую по счету ячейку необходимо исключить тот элемент, который занимает эту позицию. Если бы было, например 6 элементов, а вставить конкретный элемент требовалось также в пятую ячейку, то исключить бы пришлось уже два элемента.

Очередь.

Структура данных «Очередь» использует принцип организации FIFO (First In, First Out - «первым пришёл - первым вышел»). В некотором смысле такой метод более справедлив, чем тот, по которому функционирует стек, ведь простое правило, лежащее в основе привычных очередей в различные магазины, больницы считается вполне справедливым, а именно оно является базисом этой структуры. Пусть данное наблюдение будет примером. Строго говоря, очередь – это список, добавление элементов в который допустимо, лишь в его конец, а их извлечение производиться с другой стороны, называемой началом списка.


Очередь

Дек

Дек (deque - double ended queue, «двухсторонняя очередь») – стек с двумя концами. Действительно, несмотря конкретный перевод, дек можно определять не только как двухстороннюю очередь, но и как стек, имеющий два конца. Это означает, что данный вид списка позволяет добавлять элементы в начало и в конец, и то же самое справедливо для операции извлечения.


Дек

Эта структура одновременно работает по двум способам организации данных: FIFO и LIFO. Поэтому ее допустимо отнести к отдельной программной единице, полученной в результате суммирования двух предыдущих видов списка.

Графы.

Раздел дискретной математики, занимающийся изучением графов, называется теорией графов. В теории графов подробно рассматриваются известные понятия, свойства, способы представления и области применения этих математических объектов. Нас же интересует, лишь те ее аспекты, которые важны в программировании.

Граф – совокупность точек, соединенных линиями. Точки называются вершинами (узлами), а линии – ребрами (дугами).

Как показано на рисунке различают два основных вида графов: ориентированные и неориентированные. В первых ребра являются направленными, т. е. существует только одно доступное направление между двумя связными вершинами, например из вершины 1 можно пройти в вершину 2, но не наоборот. В неориентированном связном графе из каждой вершины можно пройти в каждую и обратно. Частный случай двух этих видов – смешанный граф. Он характерен наличием как ориентированных, так и неориентированных ребер.

Степень входа вершины – количество входящих в нее ребер, степень выхода – количество исходящих ребер.

Ребра графа необязательно должны быть прямыми, а вершины обозначаться именно цифрами, так как показано на рисунке. К тому же встречаются такие графы, ребрам которых поставлено в соответствие конкретное значение, они именуются взвешенными графами, а это значение – весом ребра. Когда у ребра оба конца совпадают, т. е. ребро выходит из вершины F и входит в нее, то такое ребро называется петлей.

Графы широко используются в структурах, созданных человеком, например в компьютерных и транспортных сетях, web-технологиях. Специальные способы представления позволяют использовать граф в информатике (в вычислительных машинах). Самые известные из них: «Матрица смежности», «Матрица инцидентности», «Список смежности», «Список рёбер». Два первых, как понятно из названия, для репрезентации графа используют матрицу, а два последних – список.

Деревья.

Неупорядоченное дерево

Дерево как математический объект это абстракция из соименных единиц, встречающихся в природе. Схожесть структуры естественных деревьев с графами определенного вида говорит о допущении установления аналогии между ними. А именно со связанными и вместе с этим ациклическими (не имеющими циклов) графами. Последние по своему строению действительно напоминают деревья, но в чем то и имеются различия, например, принято изображать математические деревья с корнем расположенным вверху, т. е. все ветви «растут» сверху вниз. Известно же, что в природе это совсем не так.

Поскольку дерево это по своей сути граф, у него с последним многие определения совпадают, либо интуитивно схожи. Так корневой узел (вершина 6) в структуре дерева – это единственная вершина (узел), характерная отсутствием предков, т. е. такая, что на нее не ссылается ни какая другая вершина, а из самого корневого узла можно дойти до любой из имеющихся вершин дерева, что следует из свойства связности данной структуры. Узлы, не ссылающиеся ни на какие другие узлы, иначе говоря, ни имеющие потомков называются листьями (2, 3, 9), либо терминальными узлами. Элементы, расположенные между корневым узлом и листьями – промежуточные узлы (1, 1, 7, 8). Каждый узел дерева имеет только одного предка, или если он корневой, то не имеет ни одного.

Поддерево – часть дерева, включающая некоторый корневой узел и все его узлы-потомки. Так, например, на рисунке одно из поддеревьев включает корень 8 и элементы 2, 1, 9.

С деревом можно выполнять многие операции, например, находить элементы, удалять элементы и поддеревья, вставлять поддеревья, находить корневые узлы для некоторых вершин и др. Одной из важнейших операций является обход дерева. Выделяются несколько методов обхода. Наиболее популярные из них: симметричный, прямой и обратный обход. При прямом обходе узлы-предки посещаются прежде своих потомков, а в обратном обходе, соответственно, обратная ситуация. В симметричном обходе поочередно просматриваются поддеревья главного дерева.

Представление данных в рассмотренной структуре выгодно в случае наличия у информации явной иерархии. Например, работа с данными о биологических родах и видах, служебных должностях, географических объектах и т. п. требует иерархически выраженной структуры, такой как математические деревья.

Структура данных - программная единица, позволяющая сберегать и обрабатывать массу однотипных или же логически связанных сведений в вычислительных устройствах. Если требуется добавить, найти, изменить или удалить сведения, структура предоставит определенный пакет опций, что составляет ее интерфейс.

Что включает в себя понятие структуры данных?

Этот термин может иметь несколько близких, но все же отличительных значений. Это:

  • абстрактный тип;
  • реализация абстрактного вида информации;
  • экземпляр типа данных, к примеру, определенный список.

Если говорить о структуре данных в контексте функционального программирования, то это особенная единица, что сберегается при изменениях. О ней неформально можно сказать как о единой структуре, несмотря на то что могут иметься различные версии.

Что формирует структуру?

Формируется с помощью ссылок и операций над ними в определенном языке программирования. Стоит сказать, что разные виды структур подходят для осуществления разных приложений, некоторые, к примеру, обладают совершенно узкой специализацией и подходят только для производства установленных задач.

Если взять B-деревья, то они обычно подходят для формирования баз данных и только для них. В этот же час хеш-таблички применяются еще повсеместно на практике для создания различных словарей, к примеру, для демонстрации доменных наименований в интернет-адресах ПК, а не только для формирования баз.

Во время разработки того или иного программного обеспечения сложность реализации и качество функциональности программ напрямую зависят от правильного применения структур данных. Такое понимание вещей дало толчок к разработке формальных методик разработки и языков программирования, где структуры, а не алгоритмы ставятся на лидирующие позиции в архитектуре программы.

Стоит отметить, что многие языки программирования обладают установленным типом модульности, что позволяет структурам с данными безопасно использоваться в различных приложениях. Яркими примерами являются языки Java, C# и C++. Сейчас классическая структура используемых данных представлена в стандартных библиотеках языков программирования или непосредственно она встроена уже в сам язык. К примеру, хэш-таблицы встроена в Lua, Python, Perl, Ruby, Tcl и другие. Широко применяется стандартная библиотека шаблонов в C++.

Сравниваем структуру в функциональном и императивном программировании

Стоит сразу оговорится, что проектировать структуры для функциональных языков сложнее, чем для императивных, как минимум на это есть две причины:

  1. Фактически все структуры часто применяют на практике присваивание, которое в чисто функциональном стиле не используется.
  2. Функциональные структуры - это гибкие системы. В императивном программировании старые версии просто заменяются на новые, а в функциональном все работает, как работало. Иными словами, в императивном программировании структуры являются эфемерными, а в функциональном они постоянные.

Что включает в себя структура?

Часто данные, с которыми работают программы, сберегаются во встроенных в применяемом языке программирования массивах, константе или в переменной длине. Массив - это простейшая структура со сведениями, однако для решения некоторых задач требуется большая эффективность некоторых операций, потому применяются иные структуры (сложнее).

Простейший массив подходит для частого обращения к установленным компонентам по индексам и их изменению, а удаление элементов из средины функционирует за принципом O(N)O(N). Если вам требуется удалить элементы, чтобы разрешить определенные задачи, то придется воспользоваться иной структурой. К примеру, бинарное дерево (std::set) позволяет делать это по O(logN)O(log⁡N), однако оно не поддерживает работу с индексами, выполняется исключительно поочередный обход элементов и их поиск по значению. Таким образом, можно сказать, что структура отличается операциями, что она способна выполнять, а также скоростью их проделывания. Для примера стоит рассмотреть простейшие структуры, что не дают выгоды в эффективности, но имеют точно установленный набор поддерживаемых операций.

Стек

Это один из типов структур данных, представленный в виде ограниченного простейшего массива. Классический стек поддерживает всего лишь три опции:

  • Внести элемент в стек (Сложность: O(1)O(1)).
  • Извлечение элемента из стека (Сложность: O(1)O(1)).
  • Проверка, пустой ли стек или нет (Сложность: O(1)O(1)).

Чтобы пояснить принцип работы стека, можно применить на практике аналогию с банкой печенья. Представьте, что на дне посудины лежит несколько печенюшек. Наверх вы можете положить еще пару кусочков или же вы можете, наоборот, взять одну печеньку сверху. Остальные печеньки будут закрыты верхними, и вы про них ничего не будете знать. Вот так дела обстоят и со стеком. Для описания понятия применяется аббревиатура LIFO (Last In, First Out), которая подчеркивает, что компонент, попавший внутрь стека последним, будет первым же и извлечен из него.

Очередь

Это еще один тип структуры данных, что поддерживает тот же набор опций, что и стек, однако у него противоположная семантика. Для описания очереди применяется аббревиатура FIFO (First In, First Out), потому как вначале извлекается элемент, что добавлен был раньше всех. Название структуры говорит за себя - принцип работы полностью совпадает с очередями, что можно увидеть в магазине, супермаркете.

Дек

Это еще один вид структуры данных, который еще называют очередью с двумя концами. Опция поддерживает следующий набор операций:

  • Внести элемент в начало (Сложность: O(1)O(1)).
  • Извлечь компонент из начала (Сложность: O(1)O(1)).
  • Внесение элемента в конец (Сложность: O(1)O(1)).
  • Извлечение элемента из конца (Сложность: O(1)O(1)).
  • Проверка, пустой ли дек (Сложность: O(1)O(1)).

Списки

Данная структура данных определяет последовательность линейно связанных компонентов, для которых разрешены операции добавления компонентов в любое место списка и его удаление. Линейный список задается указателем на начало списка. Типичные операции над списками: обход, поиск конкретного компонента, вставка элемента, удаление компонента, объединение двух списков в единое целое, разбивка списка на пару и так далее. Стоит оговориться, что в линейном списке, помимо первого, имеется предыдущий компонент для каждого элемента, не включая последний. Это означает, что компоненты списка находятся в упорядоченном состоянии. Да, обработка такого списка не всегда удобна, ведь нет возможности продвижения в противоположную сторону — от конца списка к началу. Однако в линейном списке можно поэтапно пройтись по всем составляющим.

Еще существуют кольцевые списки. Это такая же структура, что и линейный список, однако она имеет дополнительную связь между первым и последним компонентами. Другими словами, следующим за последним элементом является первый компонент.

В этом списке элементы равноправны. Выделение первого и последнего - это условность.

Деревья

Это совокупность компонентов, что именуются узлами, в котором есть главный (один) компонент в виде корня, а все остальные разбиты на множество непересекающихся элементов. Каждое множество является деревом, а корень каждого древа - потомком корня дерева. Другими словами, все компоненты соединены между собой отношениями предок-потомок. Как результат можно наблюдать иерархическую структуру узлов. Если узлы не имеют потомка, то они называются листьями. Над деревом определены такие операции, как: добавление компонента и его удаление, обход, поиск компонента. Особую роль в информатике играют бинарные деревья. Что это такое? Это частный случай дерева, где каждый узел может иметь не больше пары потомков, являющихся корнями левого и правого поддерева. Если дополнительно для узлов дерева выполняется еще условие, что все значения компонентов левого поддерева меньше значений корня, а значения компонентов правого поддерева больше корня, то такое дерево именуется деревом бинарного поиска, и предназначается оно для быстрого нахождения элементов. Как же работает алгоритм поиска в таком случае? Искомое значение сравнивается со значением корня, и в зависимости от результата поиск либо завершается, либо продолжается, но исключительно в левом или правом поддереве. Общее число операций сравнения не станет превосходить высоту дерева (это наибольшее число компонентов на пути от корня до одного из листьев).

Графы

Графы - это совокупность компонентов, что именуются вершинами вместе с комплексом отношений между данными вершинами, которые называются ребрами. Графическая интерпретация данной структуры представлена в виде множества точек, что отвечают за вершины, а некоторые пары соединены линиями или стрелками, что соответствует ребрам. Последний случай говорит о том, что граф нужно называть ориентированным.

Графами можно описывать объекты какой угодно структуры, они являются главным средством для описания сложных структур и функционирования всех систем.

Детальней об абстрактной структуре

Для построения алгоритма требуется провести формализацию данных или, иными словами, необходимо привести данные к определенной информационной модели, что уже исследована и написана. Как только модель будет найдена, то можно утверждать, что установлена абстрактная структура.

Это основная структура данных, демонстрирующая признаки, качества объекта, взаимосвязь между компонентами объекта и операции, что возможно осуществить над ним. Основная задача - поиск и отображение форм представления сведений, комфортных для компьютерной корректировки. Стоит оговориться сразу, что информатика как точная наука действует с формальными объектами.

Анализ структур данных производится следующими объектами:

  • Целые и вещественные числа.
  • Логические значения.
  • Символы.

Для обработки на компьютере всех элементов существуют соответствующие алгоритмы и структуры данных. Типичные объекты можно объединить в сложные структуры. Можно добавить операции над ними, правила к определенным компонентам этой структуры.

Структура организации данных включает в себя:

  • Векторы.
  • Динамические структуры.
  • Таблицы.
  • Многомерные массивы.
  • Графы.

Если все элементы выбраны удачно, то это будет залогом формирования эффективных алгоритмов и структур данных. Если применять на практике аналогию структур и реальных объектов, то можно эффективно разрешать существующие задачи.

Стоит заметить, что все структуры организации данных существуют и по отдельности в программировании. Над ними много трудились еще в восемнадцатых и девятнадцатых веках, когда еще и в помине не было вычислительной машины.

Возможно разрабатывать алгоритм в понятиях абстрактной структуры, однако для реализации алгоритма на определенном языке программирования потребуется отыскать методику для ее представления в типах данных, операторах, что поддерживаются конкретным языком программирования. Для создания структур, таких как вектор, табличка, строка, последовательность, во многих языках программирования имеются классические типы данных: одномерный или двухмерный массив, строка, файл.

Мы разобрались с характеристиками структур данных, теперь стоит уделить больше внимания пониманию понятия структуры. При решении абсолютно любой задачи требуется работать с какими-то данными, чтобы произвести операции над информацией. У каждой задачи есть свой набор операций, однако некоторый набор применяется на практике чаще для решения разнообразных заданий. В таком случае полезно придумать определенный способ организации информации, что позволит выполнять эти операции как можно эффективнее. Как только такой способ появился, можно считать, что у вас появился «черный ящик», в котором будут сберегаться данные определенного рода и который станет выполнять те или иные операции с данными. Это позволит отвлечься от деталей и полностью сконцентрироваться на характерных особенностях задачи. Данный «черный ящик» может быть реализован любым образом, при этом необходимо стремиться к как можно более продуктивной реализации.

Кому это необходимо знать?

Ознакомится с информацией стоит начинающим программистам, которые желают отыскать свое место в этой сфере, но не знают, куда податься. Это основы в каждом языке программирования, потому будет не лишним узнать сразу же о структурах данных, а после работать с ними на конкретных примерах и с определенным языком. Не следует забывать, что каждую структуру возможно охарактеризовать логическими и физическими представлениями, а также совокупностью операций над этими представлениями.

Не забывайте: если говорите о той или иной структуре, то имейте в виду ее логическое представление, ведь физическое представление полностью сокрыто от «внешнего наблюдателя».

Кроме того, имейте в виду, что логическое представление совершенно не зависит от языка программирования и от вычислительной машины, а физическое, наоборот, зависит от трансляторов и вычислительной техники. К примеру, двумерный массив в "Фортране" и "Паскале" можно представить идентичным образом, а физическое представление в одной и той же вычислительной машине на этих языках будет отличаться.

Не спешите начинать учить конкретные структуры, лучше всего понять их классификацию, ознакомиться со всеми в теории и желательно на практике. Стоит помнить, что изменчивость - это важный признак структуры, и он указывает на статическое, динамическое или же полустатическое положение. Изучайте основы, прежде чем приступить к более глобальным вещам, это вам поможет в дальнейшем развитии.



Понравилась статья? Поделиться с друзьями: