Индуктивное сопротивление катушки формула. Сопротивления в цепи переменного тока. Индуктивное сопротивление. Емкостное сопротивление. Суммарное сопротивление

Мы знаем, что на встречу нарастающему току генератора идет ток самоиндукции катушки. Вот это противодействие тока самоиндукции катушки нарастающему току генератора и называется индуктивным сопротивлением.

На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки также будет убывать, пресекая катушку и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора.

Таким образом вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, т. е. не вызывающим безвозвратных потерь энергии.

Единицей измерения индуктивного сопротивления является Ом

Индуктивное сопротивление обозначается X L .

Буква X- означает реактивное сопротивление, а L означает что это реактивное сопротивление является индуктивным.

f- частота Гц, L- индуктивность катушки Гн, X L- индуктивное сопротивление Ом

Соотношение между фазами U и I на X L

Так как активное сопротивление катушки по условию равно нулю (чисто индуктивное сопротивление), то все напряжение приложенное генератором к катушке идет на преодоление э. д. с. самоиндукции катушки. Это значит что график напряжения приложенного генератором к катушке равен по амплитуде графику э. д. с. самоиндукции катушки и находится с ним в противофазе.

Напряжение приложенное генератором к чисто индуктивному сопротивлению и ток идущий от генератора по чисто индуктивному сопротивлению сдвинуты по фазе на 90 0 ,т. е. напряжение опережает ток на 90 0.

Реальная катушка кроме индуктивного сопротивления имеет еще и активное сопротивление. Эти сопротивления следует считать соединенными последовательно.

На активном сопротивлении катушки напряжение приложенное генератором и ток идущий от генератора совпадают по фазе.

На чисто индуктивном сопротивлении напряжение приложенное генератором и ток идущий от генератора сдвинуты по фазе на 90 0 . Напряжение опережает ток на 90 0 . Результирующее напряжение приложенное генератором к катушке определяется по правилу параллелограмма.

кликните по картинке чтобы увеличить

Результирующее напряжение приложенное генератором к катушке всегда опережает ток на на угол меньший 90 0 .

Величина угла φ зависит от величин активного и индуктивного сопротивлений катушки.

О результирующем сопротивлении катушки

Результирующее сопротивление катушки нельзя находить суммированием величин её активного и реактивного сопротивлений .

Результирующее сопротивление катушки Z равно

Переменный ток, проходя по проводу, образует вокруг него переменное магнитное поле, которое наводит в проводнике ЭДС обратного направления (ЭДС самоиндукции). Сопротивление току , обусловленное противодействием ЭДС самоиндукции, называетсяреактивным индуктивным сопротивлением .

Величина реактивного индуктивного сопротивления зависит как от значения тока в собственном проводе, так и от величины токов в соседних проводах. Чем дальше расположены фазные провода линии, тем меньше влияние соседних проводов – поток рассеяния и индуктивное сопротивление увеличиваются.

На величину индуктивного сопротивления оказывает влияние диаметр провода, магнитная проницаемость () и частота переменного тока. Величина погонного индуктивного сопротивления рассчитывается по формуле:

где – угловая частота;

 – магнитная проницаемость;

среднегеометрическое расстояние между фазами ЛЭП;

радиус провода.

Погонное индуктивное сопротивление состоит из двух составляющих и. Величинаназывается внешним индуктивным сопротивлением. Обусловлено внешним магнитным полем и зависит только от геометрических размеров ЛЭП. Величинаназывается внутренним индуктивным сопротивлением. Обусловлено внутренним магнитным полем и зависит только от, то есть от тока проходящего по проводнику.

Среднегеометрическое расстояние между фазными проводами рассчитывается по формуле:

.

На рис. 1.3 показано возможное расположение проводов на опоре.

При расположении проводов в одной плоскости (рис. 4.3 а, б) формула для расчета D ср упрощается:

Если же провода расположены в вершинах равностороннего треугольника, то D ср =D .

Для ВЛЭП напряжением 6-10 кВ расстояние между проводами составляет 1-1,5 м; напряжением 35 кВ – 2-4 м; напряжением 110 кВ – 4-7 м; напряжением 220 кВ – 7-9м.

При f = 50Гц значение=2f = 3,14 1/с. Тогда формула (4.1) записывается следующим образом:

Для проводников выполненных из цветного металла (медь, алюминий) = 1.

На ЛЭП высокого напряжения (330 кВ и выше) применяют расщепление фазы на несколько проводов. На напряжении 330 кВ обычно используют 2 провода в фазе (индуктивное сопротивление снижается приблизительно на 19%). На напряжении 500 кВ обычно используют 3 провода в фазе (индуктивное сопротивление снижается приблизительно на 28%). На напряжении 750 кВ используют 4-6 проводов в фазе (индуктивное сопротивление снижается приблизительно на 33%).

Величина погонного индуктивного сопротивления при расщепленной конструкции фазы рассчитывается как:

где n – количество проводов в фазе;

R пр экв – эквивалентный радиус провода.

При n = 2, 3

где а – шаг расщепления (среднегеометрическое расстояние между проводами в фазе);

R пр – радиус провода.

При большем количестве проводов в фазе их располагают по окружности (см. рис. 4.4). В этом случае величина эквивалентного радиуса провода равна:

где p – радиус расщепления.

Величина погонного индуктивного сопротивления зависит от радиуса провода, и практически не зависит от сечения (рис. 4.5).

Величинаx 0 уменьшается при увеличении радиуса провода. Чем меньше средний диаметр провода, тем большеx 0 , так как в меньшей степени влияют соседние провода, уменьшается ЭДС самоиндукции. Влияние второй цепи для двухцепных ЛЭП проявляется мало, поэтому им пренебрегают.

Индуктивное сопротивление кабеля намного меньше чем у воздушных ЛЭП из-за меньших расстояний между фазами. В ряде случаев им можно пренебречь. Сравним погонное индуктивное кабельных и воздушных линий разных напряжений:

Величина реактивного сопротивления участка сети рассчитывается:

Х = х 0 l .

1 Реальные и идеальные источники эл. энергии. Схемы замещения . Любой источник электрической энергии преобразует другие виды энергии (механическую, световую, химическую и др.) в электрическую. Ток в источнике электрической энергии направлен от отрицательного вывода к положительному за счет сторонних сил, обусловленных видом энергии, которую источник преобразует в электрическую. Реальный источник электрической энергии при анализе электрических цепей можно представить либо в виде источника напряжения, либо в виде источника тока. Ниже это показано на примере обыкновенной батарейки.

Рис. 14. Представление реального источника электрической энергии либо в виде источника напряжения, либо в виде источника тока

Способы представления реального источника электрической энергии отличаются друг от друга схемами замещения (расчетными схемами). На рис. 15 реальный источник представлен (замещен) схемой источника напряжения, а на рис. 16 реальный источник представлен (замещен) схемой источника тока.


Как видно из схем на рис. 15 и 16, каждая из схем имеет идеальный источник (напряжения или тока) и собственное внутреннее сопротивление r ВН. Если внутреннее сопротивление источника напряжения равно нулю (r ВН =0), то получается идеальный источник напряжения (источник ЭДС). Если внутреннее сопротивление источника тока бесконечно велико (r ВН =), то получается идеальный источник тока (источник задающего тока). Схемы идеальных источника напряжения и идеального источника тока показаны на рис. 17 и 18. Отметим особо, что обозначать идеальный источник тока будем буквой J .

2. Цепи переменного тока. Однофазный переменный ток. Основные хар-ки, частоты фазы, начальная фаза. ПЕРЕМЕННЫЙ ОДНОФАЗНЫЙ ТОК. Ток, изменяющийся во времени по значению и направлению, называется переменным. В практике применяют периодически из меняющийся по синусоидальному закону переменный ток (рис. 1).Синусоидальные величины характеризуются следующими основными параметрами: периодом, частотой, амплитудой, начальной фазой или сдвигом фаз.

Период (T) - время (с), в течение которого переменная величина совершает полное колебание. Частота - число периодов в секунду. Единица измерения частоты - Герц (сокращенно Гц), 1 Гц равен одному колебанию в секунду. Период и частота связаны зависимостью T = 1 / f. Изменяясь с течением времени, синусоидальная величина (напряжение, ток, ЭДС) принимает различные значения. Значение величины в данный момент времени называют мгновенным. Амплитуда - наибольшее значение синусоидальной величины. Амплитуды тока, напряжения и ЭДС обозначают прописными буквами с индексом: I m , U m , E m , а их мгновенные значения - строчными буквами i , u , e . Мгновенное значение синусоидальной величины, например тока, определяют по формуле i = I m sin(ωt + ψ), где ωt + ψ - фаза-угол, определяющий значение синусоидальной величины в данный момент времени; ψ - начальная фаза, т. е. угол, определяющий значение величины в начальный момент времени. Синусоидальные величины, имеющие одинаковую частоту, но разные начальные фазы, называются сдвинутыми по фазе.

3 На рис. 2 приведены графики синусоидальных величин (тока, напряжения), сдвинутых по фазе. Когда же начальные фазы двух величин равны ψ i = ψ u , то разница ψ i − ψ u = 0 и, значит, сдвига фаз нет φ = 0 (рис. 3). Эффективность механического и теплового действия переменного тока оценивается действующим его значением. Действующее значение переменного тока равно такому значению постоянного тока, который за время, равное одному периоду переменного тока, выделит в том же сопротивлении такое же количество тепла, что и переменный ток. Действующее значение обозначают прописными буквами без индекса: I, U, E . Рис. 2 Графики синусоидальных тока и напряжения, сдвинутых по фазе. Рис. 3 Графики синусоидальных тока и напряжения, совпадающих по фазе

Для синусоидальных величин действующие и амплитудные значения связаны соотношениями:

I=I M /√2; U=U M /√2; E=E M √2. Действующие значения тока и напряжения измеряют амперметрами и вольтметрами переменного тока, а среднее значение мощности - ваттметрами.

4 .Действующим (эффективным) значением силы переменного тока называют величину постоянного тока, действие которого произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток за время одного периода. В современной литературе чаще используется математическое определение этой величины - среднеквадратичное значение силы переменного тока. Иначе говоря, действующее значение тока можно определить по формуле:

.

Для гармонических колебаний тока

5Формула индуктивного сопротивления:

где L - индуктивность.

Формула емкостного сопротивления:

где С - емкость.

Предлагаем рассмотреть цепь переменного тока, в которую включено одно активное сопротивление, и нарисовать ее в тетрадях. После проверки рисунка рассказываю, что в электрической цепи (рис. 1, а) под действием переменного напряжения протекает переменный ток, изменение которого зависит от изменения напряжения. Если напряжение увеличивается, ток в цепи возрастает, а при напряжении, равном нулю, ток в цепи отсутствует. Изменение направления его также будет совпадать с изменением направления напряжения

(рис. 1, в).

Рис 1. Цепь переменного тока с активным сопротивлением: а – схема; б – векторная диаграмма; в – волновая диаграмма

Графически изображаю на доске синусоиды тока и напряжения, которые совпадают по фазе, объясняя, что хотя по синусоиде можно определить период и частоту колебаний, а также максимальное и действующее значения, тем не менее построить синусоиду довольно сложно. Более простым способом изображения величин тока и напряжения является векторный. Для этого вектора напряжения (в масштабе) следует отложить вправо из произвольно выбранной точки. Вектор тока преподаватель предлагает учащимся отложить самостоятельно, напомнив, что напряжение и ток совпадают по фазе. После построения векторной диаграммы (рис. 1, б) следует показать, что угол между векторами напряжения и тока равен нулю, т. е. ? = 0. Сила тока в такой цепи будет определяться по закону Ома: Вопрос 2 . Цепь переменного тока с индуктивным сопротивлением Рассмотрим электрическую цепь переменного тока (рис. 2, а), в которую включено индуктивное сопротивление. Таким сопротивлением является катушка с небольшим количеством витков провода большого сечения, в которой активное сопротивление принято считать равным 0.

Рис. 2. Цепь переменного тока с индуктивным сопротивлением

Вокруг витков катушки при прохождении тока и будет создаваться переменное магнитное поле, индуктирующее в витках эдс самоиндукции. Согласно правилу Ленца, эде индукции всегда противодействует причине, вызывающей ее. А так как эде самоиндукции вызвана изменениями пе-ременного тока, то она и препятствует его прохождению. Сопротивление, вызываемое эде самоиндукции, называется индуктивным и обозначается буквой x L . Индуктивное со-противление катушки зависит от скорости изменения то-ка в катушке и ее индуктивности L: где Х L – индуктивное сопротивление, Ом; – угловая частота переменного тока, рад/с; L–индуктивность ка-тушки, Г.

Угловая частота == ,

следовательно, .

Емкостное сопротивление в цепи переменного тока. Перед началом объяснения следует напомнить, что имеется ряд случаев, когда в электрических цепях, кроме активного и индуктивного сопротивлений, имеется и емкостное сопротивление. Прибор, предназначенный для накопления электрических зарядов, называется конденсатором. Простейший конденсатор – это два проводка, разделенных слоем изоляции. Поэтому многожильные провода, кабели, обмотки электродвигателей и т. д. имеют емкостное сопротивление. Объяснение сопровождается показом конденсатора различных типов и емкостных сопротивлений с подключением их в электрическую цепь. Предлагаю рассмотреть случай, когда в электрической цепи преобладает одно емкостное сопротивление, а активным и индуктивным можно пренебречь из-за их малых значений (рис. 6, а). Если конденсатор включить в цепь постоянного тока, то ток по цепи проходить не будет, так как между пластинами конденсатора находится диэлектрик. Если же емкостное сопротивление подключить к цепи переменного тока, то по цепи будет проходить ток /, вызванный перезарядкой конденсатора. Перезарядка происходит потому, что переменное напряжение меняет свое направление, и, следовательно, если мы подключим амперметр в эту цепь, то он будет показывать ток зарядки и разрядки конденсатора. Через конденсатор ток и в этом случае не проходит. Сила тока, проходящего в цепи с емкостным сопротивлением, зависит от емкостного сопротивления конденсатора Хс и определяется по закону Ома

где U – напряжение источника эдс, В; Хс – емкостное сопротивление, Ом; / – сила тока, А.

Рис. 3. Цепь переменного тока с емкостным сопротивлением

Емкостное сопротивление в свою очередь определяется по формуле

где С – емкостное сопротивление конденсатора, Ф. Предлагаю учащимся построить векторную диаграмму тока и напряжения в цепи с емкостным сопротивлением. Напоминаю, что при изучении процессов в электрической цепи с емкостным сопротивлением было установлено, что ток опережает напряжение на угол ф = 90°. Этот сдвиг фаз тока и напряжения следует показать на волновой диаграмме. Графически изображаю на доске синусоиду напряжения (рис. 3, б) и дает задание учащимся самостоятельно нанести на чертеж синусоиду тока, опережающую напряжение на угол 90°

Мы знаем, что на встречу нарастающему току генератора идет ток самоиндукции катушки. Вот это противодействие тока самоиндукции катушки нарастающему току генератора и называется индуктивным сопротивлением.

На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки также будет убывать, пресекая катушку и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора.

Таким образом вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, т. е. не вызывающим безвозвратных потерь энергии.

Единицей измерения индуктивного сопротивления является Ом

Индуктивное сопротивление обозначается X L .

Буква X- означает реактивное сопротивление, а L означает что это реактивное сопротивление является индуктивным.

f- частота Гц, L- индуктивность катушки Гн, X L- индуктивное сопротивление Ом

Соотношение между фазами U и I на X L

Так как активное сопротивление катушки по условию равно нулю (чисто индуктивное сопротивление), то все напряжение приложенное генератором к катушке идет на преодоление э. д. с. самоиндукции катушки. Это значит что график напряжения приложенного генератором к катушке равен по амплитуде графику э. д. с. самоиндукции катушки и находится с ним в противофазе.

Напряжение приложенное генератором к чисто индуктивному сопротивлению и ток идущий от генератора по чисто индуктивному сопротивлению сдвинуты по фазе на 90 0 ,т. е. напряжение опережает ток на 90 0.

Реальная катушка кроме индуктивного сопротивления имеет еще и активное сопротивление. Эти сопротивления следует считать соединенными последовательно.

На активном сопротивлении катушки напряжение приложенное генератором и ток идущий от генератора совпадают по фазе.

На чисто индуктивном сопротивлении напряжение приложенное генератором и ток идущий от генератора сдвинуты по фазе на 90 0 . Напряжение опережает ток на 90 0 . Результирующее напряжение приложенное генератором к катушке определяется по правилу параллелограмма.

кликните по картинке чтобы увеличить

Результирующее напряжение приложенное генератором к катушке всегда опережает ток на на угол меньший 90 0 .

Величина угла φ зависит от величин активного и индуктивного сопротивлений катушки.

О результирующем сопротивлении катушки

Результирующее сопротивление катушки нельзя находить суммированием величин её активного и реактивного сопротивлений .

Результирующее сопротивление катушки Z равно

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении - положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)



Понравилась статья? Поделиться с друзьями: